|  | 
| template<typename Architecture_t > | 
| void | TMVA::DNN::addRegularizationGradients (typename Architecture_t::Matrix_t &A, const typename Architecture_t::Matrix_t &W, typename Architecture_t::Scalar_t weightDecay, ERegularization R) | 
|  | Add the regularization gradient corresponding to weight matrix W, to the matrix A.  More... 
 | 
|  | 
| template<typename Architecture_t > | 
| void | TMVA::DNN::evaluate (typename Architecture_t::Matrix_t &A, EActivationFunction f) | 
|  | Apply the given activation function to each value in the given matrix A.  More... 
 | 
|  | 
| template<typename Architecture_t > | 
| void | TMVA::DNN::evaluate (typename Architecture_t::Matrix_t &A, EOutputFunction f, const typename Architecture_t::Matrix_t &X) | 
|  | Apply the given output function to each value in the given matrix A.  More... 
 | 
|  | 
| template<typename Architecture_t > | 
| auto | TMVA::DNN::evaluate (ELossFunction f, const typename Architecture_t::Matrix_t &Y, const typename Architecture_t::Matrix_t &output, const typename Architecture_t::Matrix_t &weights) -> decltype(Architecture_t::CrossEntropy(Y, output, weights)) | 
|  | Compute the value of the objective function f for given activations of the ouput layer and the truth Y.  More... 
 | 
|  | 
| template<typename Architecture_t > | 
| void | TMVA::DNN::evaluateDerivative (typename Architecture_t::Matrix_t &B, EActivationFunction f, const typename Architecture_t::Matrix_t &A) | 
|  | Compute the first partial derivative of the activation function for the values given in matrix A and write the results into B.  More... 
 | 
|  | 
| template<typename Architecture_t > | 
| void | TMVA::DNN::evaluateGradients (typename Architecture_t::Matrix_t &dY, ELossFunction f, const typename Architecture_t::Matrix_t &Y, const typename Architecture_t::Matrix_t &output, const typename Architecture_t::Matrix_t &weights) | 
|  | Compute the gradient of the given output function f for given activations output of the output layer and truth Y and write the results into dY.  More... 
 | 
|  | 
| template<typename Architecture_t > | 
| void | TMVA::DNN::initialize (typename Architecture_t::Matrix_t &A, EInitialization m) | 
|  | 
| template<typename Architecture_t > | 
| auto | TMVA::DNN::regularization (const typename Architecture_t::Matrix_t &A, ERegularization R) -> decltype(Architecture_t::L1Regularization(A)) | 
|  | Evaluate the regularization functional for a given weight matrix.  More... 
 | 
|  |