Logo ROOT   6.14/05
Reference Guide
LegendreAssoc.C
Go to the documentation of this file.
1 /// \file
2 /// \ingroup tutorial_math
3 /// \notebook
4 /// Example describing the usage of different kinds of Associate Legendre Polynomials
5 /// To execute the macro type in:
6 ///
7 /// ~~~{.cpp}
8 /// root[0] .x LegendreAssoc.C
9 /// ~~~
10 ///
11 /// It draws common graphs for first 5
12 /// Associate Legendre Polynomials
13 /// and Spherical Associate Legendre Polynomials
14 /// Their integrals on the range [-1, 1] are calculated
15 ///
16 /// \macro_image
17 /// \macro_output
18 /// \macro_code
19 ///
20 /// \author Magdalena Slawinska
21 
22 
23 #include "TMath.h"
24 #include "TF1.h"
25 #include "TCanvas.h"
26 
27 #include <Riostream.h>
28 #include "TLegend.h"
29 #include "TLegendEntry.h"
30 
31 #include "Math/IFunction.h"
32 #include <cmath>
33 #include "TSystem.h"
34 
35 void LegendreAssoc()
36 {
37  R__LOAD_LIBRARY(libMathMore);
38 
39  std::cout <<"Drawing associate Legendre Polynomials.." << std::endl;
40  TCanvas *Canvas = new TCanvas("DistCanvas", "Associate Legendre polynomials", 10, 10, 800, 500);
41  Canvas->Divide(2,1);
42  TLegend *leg1 = new TLegend(0.5, 0.7, 0.8, 0.89);
43  TLegend *leg2 = new TLegend(0.5, 0.7, 0.8, 0.89);
44 
45  //-------------------------------------------
46  //drawing the set of Legendre functions
47  TF1* L[5];
48 
49  L[0]= new TF1("L_0", "ROOT::Math::assoc_legendre(1, 0,x)", -1, 1);
50  L[1]= new TF1("L_1", "ROOT::Math::assoc_legendre(1, 1,x)", -1, 1);
51  L[2]= new TF1("L_2", "ROOT::Math::assoc_legendre(2, 0,x)", -1, 1);
52  L[3]= new TF1("L_3", "ROOT::Math::assoc_legendre(2, 1,x)", -1, 1);
53  L[4]= new TF1("L_4", "ROOT::Math::assoc_legendre(2, 2,x)", -1, 1);
54 
55  TF1* SL[5];
56 
57  SL[0]= new TF1("SL_0", "ROOT::Math::sph_legendre(1, 0,x)", -TMath::Pi(), TMath::Pi());
58  SL[1]= new TF1("SL_1", "ROOT::Math::sph_legendre(1, 1,x)", -TMath::Pi(), TMath::Pi());
59  SL[2]= new TF1("SL_2", "ROOT::Math::sph_legendre(2, 0,x)", -TMath::Pi(), TMath::Pi());
60  SL[3]= new TF1("SL_3", "ROOT::Math::sph_legendre(2, 1,x)", -TMath::Pi(), TMath::Pi());
61  SL[4]= new TF1("SL_4", "ROOT::Math::sph_legendre(2, 2,x)", -TMath::Pi(), TMath::Pi() );
62 
63  Canvas->cd(1);
64  gPad->SetGrid();
65  gPad->SetFillColor(kWhite);
66  L[0]->SetMaximum(3);
67  L[0]->SetMinimum(-2);
68  L[0]->SetTitle("Associate Legendre Polynomials");
69  for (int nu = 0; nu < 5; nu++) {
70  L[nu]->SetLineStyle(1);
71  L[nu]->SetLineWidth(2);
72  L[nu]->SetLineColor(nu+1);
73  }
74 
75  leg1->AddEntry(L[0]->DrawCopy(), " P^{1}_{0}(x)", "l");
76  leg1->AddEntry(L[1]->DrawCopy("same"), " P^{1}_{1}(x)", "l");
77  leg1->AddEntry(L[2]->DrawCopy("same"), " P^{2}_{0}(x)", "l");
78  leg1->AddEntry(L[3]->DrawCopy("same"), " P^{2}_{1}(x)", "l");
79  leg1->AddEntry(L[4]->DrawCopy("same"), " P^{2}_{2}(x)", "l");
80  leg1->Draw();
81 
82  Canvas->cd(2);
83  gPad->SetGrid();
84  gPad->SetFillColor(kWhite);
85  SL[0]->SetMaximum(1);
86  SL[0]->SetMinimum(-1);
87  SL[0]->SetTitle("Spherical Legendre Polynomials");
88  for (int nu = 0; nu < 5; nu++) {
89  SL[nu]->SetLineStyle(1);
90  SL[nu]->SetLineWidth(2);
91  SL[nu]->SetLineColor(nu+1);
92  }
93 
94  leg2->AddEntry(SL[0]->DrawCopy(), " P^{1}_{0}(x)", "l");
95  leg2->AddEntry(SL[1]->DrawCopy("same"), " P^{1}_{1}(x)", "l");
96  leg2->AddEntry(SL[2]->DrawCopy("same"), " P^{2}_{0}(x)", "l");
97  leg2->AddEntry(SL[3]->DrawCopy("same"), " P^{2}_{1}(x)", "l");
98  leg2->AddEntry(SL[4]->DrawCopy("same"), " P^{2}_{2}(x)", "l");
99  leg2->Draw();
100 
101 
102  //integration
103 
104  std::cout << "Calculating integrals of Associate Legendre Polynomials on [-1, 1]" << std::endl;
105  double integral[5];
106  for (int nu = 0; nu < 5; nu++) {
107  integral[nu] = L[nu]->Integral(-1.0, 1.0);
108  std::cout <<"Integral [-1,1] for Associated Legendre Polynomial of Degree " << nu << "\t = \t" << integral[nu] << std::endl;
109  }
110 }
111 
virtual void SetLineWidth(Width_t lwidth)
Set the line width.
Definition: TAttLine.h:43
This class displays a legend box (TPaveText) containing several legend entries.
Definition: TLegend.h:23
virtual void Draw(Option_t *option="")
Draw this legend with its current attributes.
Definition: TLegend.cxx:423
TVirtualPad * cd(Int_t subpadnumber=0)
Set current canvas & pad.
Definition: TCanvas.cxx:688
virtual void SetMinimum(Double_t minimum=-1111)
Set the minimum value along Y for this function In case the function is already drawn, set also the minimum in the helper histogram.
Definition: TF1.cxx:3313
virtual Double_t Integral(Double_t a, Double_t b, Double_t epsrel=1.e-12)
IntegralOneDim or analytical integral.
Definition: TF1.cxx:2409
static constexpr double L
constexpr Double_t Pi()
Definition: TMath.h:38
Definition: Rtypes.h:58
virtual void SetLineColor(Color_t lcolor)
Set the line color.
Definition: TAttLine.h:40
#define R__LOAD_LIBRARY(LIBRARY)
Definition: Rtypes.h:467
virtual void SetMaximum(Double_t maximum=-1111)
Set the maximum value along Y for this function In case the function is already drawn, set also the maximum in the helper histogram.
Definition: TF1.cxx:3300
virtual void SetTitle(const char *title="")
Set function title if title has the form "fffffff;xxxx;yyyy", it is assumed that the function title i...
Definition: TF1.cxx:3455
The Canvas class.
Definition: TCanvas.h:31
TLegendEntry * AddEntry(const TObject *obj, const char *label="", Option_t *option="lpf")
Add a new entry to this legend.
Definition: TLegend.cxx:330
virtual void SetLineStyle(Style_t lstyle)
Set the line style.
Definition: TAttLine.h:42
virtual void Divide(Int_t nx=1, Int_t ny=1, Float_t xmargin=0.01, Float_t ymargin=0.01, Int_t color=0)
Automatic pad generation by division.
Definition: TPad.cxx:1162
1-Dim function class
Definition: TF1.h:211
#define gPad
Definition: TVirtualPad.h:285