28 #ifndef ROOT_TMVA_MethodDL 29 #define ROOT_TMVA_MethodDL 91 std::unique_ptr<DeepNetImpl_t>
fNet;
94 void DeclareOptions();
95 void ProcessOptions();
100 void ParseInputLayout();
101 void ParseBatchLayout();
107 template <
typename Architecture_t,
typename Layer_t>
111 template <
typename Architecture_t,
typename Layer_t>
115 template <
typename Architecture_t,
typename Layer_t>
119 template <
typename Architecture_t,
typename Layer_t>
124 template <
typename Architecture_t,
typename Layer_t>
129 template <
typename Architecture_t,
typename Layer_t>
133 template <
typename Architecture_t,
typename Layer_t>
137 template <
typename Architecture_t>
171 void GetHelpMessage()
const;
197 void AddWeightsXMLTo(
void *parent)
const;
198 void ReadWeightsFromXML(
void *wghtnode);
199 void ReadWeightsFromStream(std::istream &);
202 const Ranking *CreateRanking();
243 fWeightInitialization = weightInitialization;
250 fWeightInitializationString = weightInitializationString;
void SetBatchHeight(size_t batchHeight)
DNN::ELossFunction GetLossFunction() const
void SetArchitectureString(TString architectureString)
TString fLayoutString
The string defining the layout of the deep net.
The TCpu architecture class.
void SetInputDepth(size_t inputDepth)
Setters.
void SetWeightInitializationString(TString weightInitializationString)
std::vector< TTrainingSettings > & GetTrainingSettings()
void SetBatchWidth(size_t batchWidth)
DNN::EInitialization GetWeightInitialization() const
Virtual base Class for all MVA method.
DNN::EOutputFunction fOutputFunction
The output function for making the predictions.
DNN::EInitialization fWeightInitialization
The initialization method.
size_t GetBatchWidth() const
TString GetLayoutString() const
Ranking for variables in method (implementation)
void SetOutputFunction(DNN::EOutputFunction outputFunction)
size_t fRandomSeed
The random seed used to initialize the weights and shuffling batches (default is zero) ...
void SetErrorStrategyString(TString errorStrategy)
TString fArchitectureString
The string defining the architecure: CPU or GPU.
void SetLayoutString(TString layoutString)
void SetWeightInitialization(DNN::EInitialization weightInitialization)
size_t fInputDepth
The depth of the input.
#define ClassDef(name, id)
The reference architecture class.
void Init(TClassEdit::TInterpreterLookupHelper *helper)
const DeepNetImpl_t & GetDeepNet() const
TString fTrainingStrategyString
The string defining the training strategy.
bool fBuildNet
Flag to control whether to build fNet, the stored network used for the evaluation.
std::vector< std::map< TString, TString > > KeyValueVector_t
void SetBatchDepth(size_t batchDepth)
TString fBatchLayoutString
The string defining the layout of the batch.
Class that contains all the data information.
TString GetBatchLayoutString() const
TString GetArchitectureString() const
void SetTrainingStrategyString(TString trainingStrategyString)
void SetInputWidth(size_t inputWidth)
All of the options that can be specified in the training string.
size_t fInputWidth
The width of the input.
TString GetWeightInitializationString() const
DNN::ELossFunction fLossFunction
The loss function.
TMVA::DNN::TDeepNet< ArchitectureImpl_t > DeepNetImpl_t
TString GetErrorStrategyString() const
std::vector< TTrainingSettings > fTrainingSettings
The vector defining each training strategy.
const std::vector< TTrainingSettings > & GetTrainingSettings() const
size_t GetBatchDepth() const
TString GetInputLayoutString() const
size_t GetInputDepth() const
size_t fBatchDepth
The depth of the batch used to train the deep net.
KeyValueVector_t fSettings
Map for the training strategy.
TString fErrorStrategy
The string defining the error strategy for training.
DNN::ERegularization regularization
size_t fInputHeight
The height of the input.
EOutputFunction
Enum that represents output functions.
ELossFunction
Enum that represents objective functions for the net, i.e.
void SetInputHeight(size_t inputHeight)
TString GetTrainingStrategyString() const
const KeyValueVector_t & GetKeyValueSettings() const
KeyValueVector_t & GetKeyValueSettings()
Abstract ClassifierFactory template that handles arbitrary types.
DNN::EOutputFunction GetOutputFunction() const
size_t fBatchHeight
The height of the batch used to train the deep net.
TMVA::DNN::TReference< Double_t > ArchitectureImpl_t
std::vector< Double_t > dropoutProbabilities
TString fInputLayoutString
The string defining the layout of the input.
ERegularization
Enum representing the regularization type applied for a given layer.
virtual void ReadWeightsFromStream(std::istream &)=0
size_t GetInputHeight() const
size_t GetBatchHeight() const
size_t GetInputWidth() const
size_t fBatchWidth
The width of the batch used to train the deep net.
TString fWeightInitializationString
The string defining the weight initialization method.
std::unique_ptr< DeepNetImpl_t > fNet
Generic Deep Neural Network class.