Double_t BesselI(Int_t n, Double_t x)
Double_t FDist(Double_t F, Double_t N, Double_t M)
Double_t Landau(Double_t x, Double_t mpv=0, Double_t sigma=1, Bool_t norm=kFALSE)
The LANDAU function.
Double_t ErfInverse(Double_t x)
returns the inverse error function x must be <-1<x<1
Double_t BreitWigner(Double_t x, Double_t mean=0, Double_t gamma=1)
Calculate a Breit Wigner function with mean and gamma.
Double_t FDistI(Double_t F, Double_t N, Double_t M)
Double_t PoissonI(Double_t x, Double_t par)
Double_t KolmogorovProb(Double_t z)
Double_t LaplaceDistI(Double_t x, Double_t alpha=0, Double_t beta=1)
Double_t StudentQuantile(Double_t p, Double_t ndf, Bool_t lower_tail=kTRUE)
Double_t NormQuantile(Double_t p)
Double_t BetaDist(Double_t x, Double_t p, Double_t q)
Double_t LaplaceDist(Double_t x, Double_t alpha=0, Double_t beta=1)
Double_t Log2(Double_t x)
Double_t StruveH1(Double_t x)
Struve functions of order 0.
Double_t Gamma(Double_t z)
Computation of gamma(z) for all z.
Double_t BesselJ1(Double_t x)
Bessel function J0(x) for any real x.
static RooCFunction1Map< VO, VI > & fmap()
Double_t Prob(Double_t chi2, Int_t ndf)
Double_t StudentI(Double_t T, Double_t ndf)
LongDouble_t Power(LongDouble_t x, LongDouble_t y)
Double_t Ldexp(Double_t x, Int_t exp)
Double_t BesselY1(Double_t x)
Bessel function Y0(x) for positive x.
Double_t ChisquareQuantile(Double_t p, Double_t ndf)
Double_t Log10(Double_t x)
Double_t BesselI1(Double_t x)
modified Bessel function K_0(x)
Double_t Freq(Double_t x)
Computation of the normal frequency function freq(x).
Double_t ATan2(Double_t, Double_t)
Double_t Erfc(Double_t x)
Compute the complementary error function erfc(x).
static RooCFunction2Map< VO, VI1, VI2 > & fmap()
Double_t DiLog(Double_t x)
Modified Struve functions of order 1.
Double_t VavilovI(Double_t x, Double_t kappa, Double_t beta2)
Double_t BesselY0(Double_t x)
Bessel function J1(x) for any real x.
Double_t Erf(Double_t x)
Computation of the error function erf(x).
Double_t BetaDistI(Double_t x, Double_t p, Double_t q)
Double_t StruveL1(Double_t x)
Modified Struve functions of order 0.
Double_t Voigt(Double_t x, Double_t sigma, Double_t lg, Int_t r=4)
Double_t StruveL0(Double_t x)
Struve functions of order 1.
Double_t Binomial(Int_t n, Int_t k)
Double_t LandauI(Double_t x)
Double_t BesselJ0(Double_t x)
modified Bessel function K_1(x)
Double_t ErfcInverse(Double_t x)
returns the inverse of the complementary error function x must be 0<x<2 implement using the quantile ...
static RooCFunction4Map< VO, VI1, VI2, VI3, VI4 > & fmap()
Double_t Poisson(Double_t x, Double_t par)
Double_t Student(Double_t T, Double_t ndf)
Double_t Beta(Double_t p, Double_t q)
Double_t Gaus(Double_t x, Double_t mean=0, Double_t sigma=1, Bool_t norm=kFALSE)
Calculate a gaussian function with mean and sigma.
Double_t BesselI0(Double_t x)
integer order modified Bessel function K_n(x)
Double_t BesselK(Int_t n, Double_t x)
integer order modified Bessel function I_n(x)
static RooCFunction3Map< VO, VI1, VI2, VI3 > & fmap()
Double_t StruveH0(Double_t x)
Bessel function Y1(x) for positive x.
Double_t Hypot(Double_t x, Double_t y)
Double_t BesselK0(Double_t x)
modified Bessel function I_0(x)
Double_t BinomialI(Double_t p, Int_t n, Int_t k)
Double_t BetaCf(Double_t x, Double_t a, Double_t b)
Double_t GammaDist(Double_t x, Double_t gamma, Double_t mu=0, Double_t beta=1)
Double_t Factorial(Int_t i)
Compute factorial(n).
Double_t BesselK1(Double_t x)
modified Bessel function I_1(x)
Double_t LnGamma(Double_t z)
Computation of ln[gamma(z)] for all z.
Double_t LogNormal(Double_t x, Double_t sigma, Double_t theta=0, Double_t m=1)
Double_t Sqrt(Double_t x)
Double_t BetaIncomplete(Double_t x, Double_t a, Double_t b)
Double_t CauchyDist(Double_t x, Double_t t=0, Double_t s=1)
Double_t Vavilov(Double_t x, Double_t kappa, Double_t beta2)