Logo ROOT   6.14/05
Reference Guide
TSVDUnfoldExample.C File Reference

Detailed Description

View in nbviewer Open in SWAN Data unfolding using Singular Value Decomposition

TSVDUnfold example

Data unfolding using Singular Value Decomposition (hep-ph/9509307)

Example distribution and smearing model from Tim Adye (RAL)

pict1_TSVDUnfoldExample.C.png
#include <iostream>
#include "TROOT.h"
#include "TSystem.h"
#include "TStyle.h"
#include "TRandom3.h"
#include "TString.h"
#include "TMath.h"
#include "TH1D.h"
#include "TH2D.h"
#include "TLegend.h"
#include "TCanvas.h"
#include "TColor.h"
#include "TLine.h"
#include "TSVDUnfold.h"
Double_t Reconstruct( Double_t xt, TRandom3& R )
{
// apply some Gaussian smearing + bias and efficiency corrections to fake reconstruction
const Double_t cutdummy = -99999.0;
Double_t xeff = 0.3 + (1.0 - 0.3)/20.0*(xt + 10.0); // efficiency
Double_t x = R.Rndm();
if (x > xeff) return cutdummy;
else {
Double_t xsmear= R.Gaus(-2.5,0.2); // bias and smear
return xt+xsmear;
}
}
void TSVDUnfoldExample()
{
gROOT->SetStyle("Plain");
const Double_t cutdummy= -99999.0;
// --------------------------------------
// Data/MC toy generation
//
// The MC input
Int_t nbins = 40;
TH1D *xini = new TH1D("xini", "MC truth", nbins, -10.0, 10.0);
TH1D *bini = new TH1D("bini", "MC reco", nbins, -10.0, 10.0);
TH2D *Adet = new TH2D("Adet", "detector response", nbins, -10.0, 10.0, nbins, -10.0, 10.0);
// Data
TH1D *data = new TH1D("data", "data", nbins, -10.0, 10.0);
// Data "truth" distribution to test the unfolding
TH1D *datatrue = new TH1D("datatrue", "data truth", nbins, -10.0, 10.0);
// Statistical covariance matrix
TH2D *statcov = new TH2D("statcov", "covariance matrix", nbins, -10.0, 10.0, nbins, -10.0, 10.0);
// Fill the MC using a Breit-Wigner, mean 0.3 and width 2.5.
for (Int_t i= 0; i<100000; i++) {
Double_t xt = R.BreitWigner(0.3, 2.5);
xini->Fill(xt);
Double_t x = Reconstruct( xt, R );
if (x != cutdummy) {
Adet->Fill(x, xt);
bini->Fill(x);
}
}
// Fill the "data" with a Gaussian, mean 0 and width 2.
for (Int_t i=0; i<10000; i++) {
Double_t xt = R.Gaus(0.0, 2.0);
datatrue->Fill(xt);
Double_t x = Reconstruct( xt, R );
if (x != cutdummy)
data->Fill(x);
}
cout << "Created toy distributions and errors for: " << endl;
cout << "... \"true MC\" and \"reconstructed (smeared) MC\"" << endl;
cout << "... \"true data\" and \"reconstructed (smeared) data\"" << endl;
cout << "... the \"detector response matrix\"" << endl;
// Fill the data covariance matrix
for (int i=1; i<=data->GetNbinsX(); i++) {
statcov->SetBinContent(i,i,data->GetBinError(i)*data->GetBinError(i));
}
// ----------------------------
// Here starts the actual unfolding
//
// Create TSVDUnfold object and initialise
TSVDUnfold *tsvdunf = new TSVDUnfold( data, statcov, bini, xini, Adet );
// It is possible to normalise unfolded spectrum to unit area
tsvdunf->SetNormalize( kFALSE ); // no normalisation here
// Perform the unfolding with regularisation parameter kreg = 13
// - the larger kreg, the finer grained the unfolding, but the more fluctuations occur
// - the smaller kreg, the stronger is the regularisation and the bias
TH1D* unfres = tsvdunf->Unfold( 13 );
// Get the distribution of the d to cross check the regularization
// - choose kreg to be the point where |d_i| stop being statistically significantly >>1
TH1D* ddist = tsvdunf->GetD();
// Get the distribution of the singular values
TH1D* svdist = tsvdunf->GetSV();
// Compute the error matrix for the unfolded spectrum using toy MC
// using the measured covariance matrix as input to generate the toys
// 100 toys should usually be enough
// The same method can be used for different covariance matrices separately.
TH2D* ustatcov = tsvdunf->GetUnfoldCovMatrix( statcov, 100 );
// Now compute the error matrix on the unfolded distribution originating
// from the finite detector matrix statistics
TH2D* uadetcov = tsvdunf->GetAdetCovMatrix( 100 );
// Sum up the two (they are uncorrelated)
ustatcov->Add( uadetcov );
//Get the computed regularized covariance matrix (always corresponding to total uncertainty passed in constructor) and add uncertainties from finite MC statistics.
TH2D* utaucov = tsvdunf->GetXtau();
utaucov->Add( uadetcov );
//Get the computed inverse of the covariance matrix
TH2D* uinvcov = tsvdunf->GetXinv();
// ---------------------------------
// Only plotting stuff below
for (int i=1; i<=unfres->GetNbinsX(); i++) {
unfres->SetBinError(i, TMath::Sqrt(utaucov->GetBinContent(i,i)));
}
// Renormalize just to be able to plot on the same scale
xini->Scale(0.7*datatrue->Integral()/xini->Integral());
TLegend *leg = new TLegend(0.58,0.60,0.99,0.88);
leg->SetBorderSize(0);
leg->SetFillColor(0);
leg->SetFillStyle(0);
leg->AddEntry(unfres,"Unfolded Data","p");
leg->AddEntry(datatrue,"True Data","l");
leg->AddEntry(data,"Reconstructed Data","l");
leg->AddEntry(xini,"True MC","l");
TCanvas *c1 = new TCanvas( "c1", "Unfolding toy example with TSVDUnfold", 1000, 900 );
c1->Divide(1,2);
TVirtualPad * c11 = c1->cd(1);
TH1D* frame = new TH1D( *unfres );
frame->SetTitle( "Unfolding toy example with TSVDUnfold" );
frame->GetXaxis()->SetTitle( "x variable" );
frame->GetYaxis()->SetTitle( "Events" );
frame->GetXaxis()->SetTitleOffset( 1.25 );
frame->GetYaxis()->SetTitleOffset( 1.29 );
frame->Draw();
data->SetLineStyle(2);
data->SetLineColor(4);
data->SetLineWidth(2);
unfres->SetMarkerStyle(20);
datatrue->SetLineColor(2);
datatrue->SetLineWidth(2);
xini->SetLineStyle(2);
xini->SetLineColor(8);
xini->SetLineWidth(2);
// ------------------------------------------------------------
// add histograms
unfres->Draw("same");
datatrue->Draw("same");
data->Draw("same");
xini->Draw("same");
leg->Draw();
// covariance matrix
TVirtualPad * c12 = c1->cd(2);
c12->Divide(2,1);
TVirtualPad * c2 = c12->cd(1);
c2->SetRightMargin ( 0.15 );
TH2D* covframe = new TH2D( *ustatcov );
covframe->SetTitle( "TSVDUnfold covariance matrix" );
covframe->GetXaxis()->SetTitle( "x variable" );
covframe->GetYaxis()->SetTitle( "x variable" );
covframe->GetXaxis()->SetTitleOffset( 1.25 );
covframe->GetYaxis()->SetTitleOffset( 1.29 );
covframe->Draw();
ustatcov->SetLineWidth( 2 );
ustatcov->Draw( "colzsame" );
// distribution of the d quantity
TVirtualPad * c3 = c12->cd(2);
c3->SetLogy();
TLine *line = new TLine( 0.,1.,40.,1. );
line->SetLineStyle(2);
TH1D* dframe = new TH1D( *ddist );
dframe->SetTitle( "TSVDUnfold |d_{i}|" );
dframe->GetXaxis()->SetTitle( "i" );
dframe->GetYaxis()->SetTitle( "|d_{i}|" );
dframe->GetXaxis()->SetTitleOffset( 1.25 );
dframe->GetYaxis()->SetTitleOffset( 1.29 );
dframe->SetMinimum( 0.001 );
dframe->Draw();
ddist->SetLineWidth( 2 );
ddist->Draw( "same" );
line->Draw();
}
Authors
Kerstin Tackmann, Andreas Hoecker, Heiko Lacker

Definition in file TSVDUnfoldExample.C.