43 const std::vector<TMatrixT<Double_t>> &linputTensor = std::get<0>(fData);
45 if (fBatchDepth == 1) {
46 for (
size_t i = 0; i < fBatchHeight; i++) {
47 size_t sampleIndex = *sampleIterator;
48 for (
size_t j = 0; j < fBatchWidth; j++) {
49 tensor[0](i, j) = static_cast<Real_t>(linputTensor[0](sampleIndex, j));
54 for (
size_t i = 0; i < fBatchDepth; i++) {
55 size_t sampleIndex = *sampleIterator;
56 for (
size_t j = 0; j < fBatchHeight; j++) {
57 for (
size_t k = 0; k < fBatchWidth; k++) {
58 tensor[i](j, k) = static_cast<Real_t>(linputTensor[sampleIndex](j, k));
74 for (
size_t i = 0; i < fBatchSize; i++) {
75 size_t sampleIndex = *sampleIterator;
76 for (
size_t j = 0; j <
n; j++) {
77 matrix(i, j) =
static_cast<Real_t>(loutputMatrix(sampleIndex, j));
91 for (
size_t i = 0; i < fBatchSize; i++) {
92 size_t sampleIndex = *sampleIterator;
93 matrix(i, 0) =
static_cast<Real_t>(lweightMatrix(sampleIndex, 0));
103 const std::vector<TMatrixT<Double_t>> &linputTensor = std::get<0>(fData);
105 if (fBatchDepth == 1) {
106 for (
size_t i = 0; i < fBatchHeight; i++) {
107 size_t sampleIndex = *sampleIterator;
108 for (
size_t j = 0; j < fBatchWidth; j++) {
109 tensor[0](i, j) = linputTensor[0](sampleIndex, j);
114 for (
size_t i = 0; i < fBatchDepth; i++) {
115 size_t sampleIndex = *sampleIterator;
116 for (
size_t j = 0; j < fBatchHeight; j++) {
117 for (
size_t k = 0; k < fBatchWidth; k++) {
118 tensor[i](j, k) = linputTensor[sampleIndex](j, k);
134 for (
size_t i = 0; i < fBatchSize; i++) {
135 size_t sampleIndex = *sampleIterator;
136 for (
size_t j = 0; j <
n; j++) {
137 matrix(i, j) = loutputMatrix(sampleIndex, j);
151 for (
size_t i = 0; i < fBatchSize; i++) {
152 size_t sampleIndex = *sampleIterator;
153 matrix(i, 0) = lweightMatrix(sampleIndex, 0);
164 Event *
event = std::get<0>(fData)[0];
166 if (fBatchDepth == 1) {
167 for (
size_t i = 0; i < fBatchHeight; i++) {
168 size_t sampleIndex = *sampleIterator;
169 for (
size_t j = 0; j < fBatchWidth; j++) {
170 event = std::get<0>(fData)[sampleIndex];
171 tensor[0](i, j) = static_cast<Real_t>(event->GetValue(j));
176 for (
size_t i = 0; i < fBatchDepth; i++) {
177 size_t sampleIndex = *sampleIterator;
178 for (
size_t j = 0; j < fBatchHeight; j++) {
179 for (
size_t k = 0; k < fBatchWidth; k++) {
180 event = std::get<0>(fData)[sampleIndex];
181 tensor[i](j, k) = static_cast<Real_t>(event->GetValue(j * fBatchWidth + k));
197 for (
size_t i = 0; i < fBatchSize; i++) {
198 size_t sampleIndex = *sampleIterator++;
199 Event *
event = std::get<0>(fData)[sampleIndex];
201 for (
Int_t j = 0; j <
n; j++) {
202 if (event->GetNTargets() == 0) {
204 matrix(i, j) = (info.
IsSignal(event)) ? 1.0 : 0.0;
207 if (j == (
Int_t)event->GetClass()) {
212 matrix(i, j) =
static_cast<Real_t>(
event->GetTarget(j));
223 for (
size_t i = 0; i < fBatchSize; i++) {
224 size_t sampleIndex = *sampleIterator++;
225 Event *
event = std::get<0>(fData)[sampleIndex];
226 matrix(i, 0) =
static_cast<Real_t>(
event->GetWeight());
236 Event *
event = std::get<0>(fData)[0];
238 if (fBatchDepth == 1) {
239 for (
size_t i = 0; i < fBatchHeight; i++) {
240 size_t sampleIndex = *sampleIterator;
241 for (
size_t j = 0; j < fBatchWidth; j++) {
242 event = std::get<0>(fData)[sampleIndex];
243 tensor[0](i, j) = event->
GetValue(j);
248 for (
size_t i = 0; i < fBatchDepth; i++) {
249 size_t sampleIndex = *sampleIterator;
250 for (
size_t j = 0; j < fBatchHeight; j++) {
251 for (
size_t k = 0; k < fBatchWidth; k++) {
252 event = std::get<0>(fData)[sampleIndex];
253 tensor[i](j, k) = event->GetValue(j * fBatchWidth + k);
269 for (
size_t i = 0; i < fBatchSize; i++) {
270 size_t sampleIndex = *sampleIterator++;
271 Event *
event = std::get<0>(fData)[sampleIndex];
273 for (
Int_t j = 0; j <
n; j++) {
274 if (event->GetNTargets() == 0) {
276 matrix(i, j) = (info.
IsSignal(event)) ? 1.0 : 0.0;
279 if (j == (
Int_t)event->GetClass()) {
284 matrix(i, j) =
event->GetTarget(j);
295 for (
size_t i = 0; i < fBatchSize; i++) {
296 size_t sampleIndex = *sampleIterator++;
297 Event *
event = std::get<0>(fData)[sampleIndex];
298 matrix(i, 0) =
event->GetWeight();
Class that contains all the data information.
typename std::vector< size_t >::iterator IndexIterator_t
Float_t GetValue(UInt_t ivar) const
return value of i'th variable
Abstract ClassifierFactory template that handles arbitrary types.
Bool_t IsSignal(const Event *ev) const