Logo ROOT   6.14/05
Reference Guide
ToyMCImportanceSampler.cxx
Go to the documentation of this file.
1 // @(#)root/roostats:$Id$
2 // Author: Sven Kreiss January 2012
3 // Author: Kyle Cranmer, Lorenzo Moneta, Gregory Schott, Wouter Verkerke
4 /*************************************************************************
5  * Copyright (C) 1995-2008, Rene Brun and Fons Rademakers. *
6  * All rights reserved. *
7  * *
8  * For the licensing terms see $ROOTSYS/LICENSE. *
9  * For the list of contributors see $ROOTSYS/README/CREDITS. *
10  *************************************************************************/
11 
12 /** \class RooStats::ToyMCImportanceSampler
13  \ingroup Roostats
14 
15 ToyMCImportanceSampler is an extension of the ToyMCSampler for Importance Sampling.
16 
17 Implementation based on a work by Cranmer, Kreiss, Read (in Preparation)
18 */
19 
21 
22 #include "RooMsgService.h"
23 
24 #include "RooCategory.h"
25 #include "TMath.h"
26 
27 using namespace RooFit;
28 using namespace std;
29 
30 
32 
33 namespace RooStats {
34 
35 ////////////////////////////////////////////////////////////////////////////////
36 
37 ToyMCImportanceSampler::~ToyMCImportanceSampler() {
38  for( unsigned int i=0; i < fImportanceSnapshots.size(); i++ ) if(fImportanceSnapshots[i]) delete fImportanceSnapshots[i];
39  for( unsigned int i=0; i < fNullSnapshots.size(); i++ ) if(fNullSnapshots[i]) delete fNullSnapshots[i];
40 }
41 
42 ////////////////////////////////////////////////////////////////////////////////
43 
44 void ToyMCImportanceSampler::ClearCache(void) {
45  ToyMCSampler::ClearCache();
46 
47  for( unsigned int i=0; i < fImpNLLs.size(); i++ ) if(fImpNLLs[i]) { delete fImpNLLs[i]; fImpNLLs[i] = NULL; }
48  for( unsigned int i=0; i < fNullNLLs.size(); i++ ) if(fNullNLLs[i]) { delete fNullNLLs[i]; fNullNLLs[i] = NULL; }
49 }
50 
51 ////////////////////////////////////////////////////////////////////////////////
52 
53 RooDataSet* ToyMCImportanceSampler::GetSamplingDistributionsSingleWorker(RooArgSet& paramPoint) {
54  if( fNToys == 0 ) return NULL;
55 
56  // remember original #toys, but overwrite it temporarily with the #toys per distribution
57  Int_t allToys = fNToys;
58 
59  // to keep track of which dataset entry comes form which density, define a roocategory as a label
60  RooCategory densityLabel( "densityLabel", "densityLabel" );
61  densityLabel.defineType( "null", -1 );
62  for( unsigned int i=0; i < fImportanceDensities.size(); i++ )
63  densityLabel.defineType( TString::Format( "impDens_%d", i ), i );
64 
65 
66  RooDataSet* fullResult = NULL;
67 
68  // generate null (negative i) and imp densities (0 and positive i)
69  for( int i = -1; i < (int)fImportanceDensities.size(); i++ ) {
70  if( i < 0 ) {
71  // generate null toys
72  oocoutP((TObject*)0,Generation) << endl << endl << " GENERATING FROM NULL DENSITY " << endl << endl;
73  SetDensityToGenerateFromByIndex( 0, true ); // true = generate from null
74  }else{
75  oocoutP((TObject*)0,Generation) << endl << endl << " GENERATING IMP DENS/SNAP "<<i+1<<" OUT OF "<<fImportanceDensities.size()<<endl<<endl;
76  SetDensityToGenerateFromByIndex( i, false ); // false = generate not from null
77  }
78 
79  RooRealVar reweight( "reweight", "reweight", 1.0 );
80  // apply strategy for how to distribute the #toys between the distributions
81  if( fToysStrategy == EQUALTOYSPERDENSITY ) {
82  // assuming alltoys = one null + N imp densities. And round up.
83  fNToys = TMath::CeilNint( double(allToys)/(fImportanceDensities.size()+1) );
84  }else if(fToysStrategy == EXPONENTIALTOYDISTRIBUTION ) {
85  // for N densities, split the toys into (2^(N+1))-1 parts, and assign 2^0 parts to the first
86  // density (which is the null), 2^1 to the second (first imp dens), etc, up to 2^N
87  fNToys = TMath::CeilNint( double(allToys) * pow( double(2) , i+1 ) / (pow( double(2), int(fImportanceDensities.size()+1) )-1) );
88 
89  int largestNToys = TMath::CeilNint( allToys * pow( double(2), int(fImportanceDensities.size()) ) / (pow( double(2), int(fImportanceDensities.size()+1) )-1) );
90  reweight.setVal( ((double)largestNToys) / fNToys );
91  }
92 
93  ooccoutI((TObject*)NULL,InputArguments) << "Generating " << fNToys << " toys for this density." << endl;
94  ooccoutI((TObject*)NULL,InputArguments) << "Reweight is " << reweight.getVal() << endl;
95 
96 
97  RooDataSet* result = ToyMCSampler::GetSamplingDistributionsSingleWorker( paramPoint );
98 
99  if (result->get()->getSize() > Int_t(fTestStatistics.size())) {
100  // add label
101  densityLabel.setIndex( i );
102  result->addColumn( densityLabel );
103  result->addColumn( reweight );
104  }
105 
106  if( !fullResult ) {
107  RooArgSet columns( *result->get() );
108  RooRealVar weightVar ( "weight", "weight", 1.0 );
109  columns.add( weightVar );
110 // cout << endl << endl << "Reweighted data columns: " << endl;
111 // columns.Print("v");
112 // cout << endl;
113  fullResult = new RooDataSet( result->GetName(), result->GetTitle(), columns, "weight" );
114  }
115 
116  for( int j=0; j < result->numEntries(); j++ ) {
117 // cout << "entry: " << j << endl;
118 // result->get(j)->Print();
119 // cout << "weight: " << result->weight() << endl;
120 // cout << "reweight: " << reweight.getVal() << endl;
121  const RooArgSet* row = result->get(j);
122  fullResult->add( *row, result->weight()*reweight.getVal() );
123  }
124  delete result;
125  }
126 
127  // restore #toys
128  fNToys = allToys;
129 
130  return fullResult;
131 }
132 
133 ////////////////////////////////////////////////////////////////////////////////
134 
135 RooAbsData* ToyMCImportanceSampler::GenerateToyData(
136  RooArgSet& paramPoint,
137  double& weight
138 ) const {
139  if( fNullDensities.size() > 1 ) {
140  ooccoutI((TObject*)NULL,InputArguments) << "Null Densities:" << endl;
141  for( unsigned int i=0; i < fNullDensities.size(); i++) {
142  ooccoutI((TObject*)NULL,InputArguments) << " null density["<<i<<"]: " << fNullDensities[i] << " \t null snapshot["<<i<<"]: " << fNullSnapshots[i] << endl;
143  }
144  ooccoutE((TObject*)NULL,InputArguments) << "Cannot use multiple null densities and only ask for one weight." << endl;
145  return NULL;
146  }
147 
148  if( fNullDensities.size() == 0 && fPdf ) {
149  ooccoutI((TObject*)NULL,InputArguments) << "No explicit null densities specified. Going to add one based on the given paramPoint and the global fPdf. ... but cannot do that inside const function." << endl;
150  //AddNullDensity( fPdf, &paramPoint );
151  }
152 
153  // do not do anything if the given parameter point if fNullSnapshots[0]
154  // ... which is the most common case
155  if( fNullSnapshots[0] != &paramPoint ) {
156  ooccoutD((TObject*)NULL,InputArguments) << "Using given parameter point. Replaces snapshot for the only null currently defined." << endl;
157  if(fNullSnapshots[0]) delete fNullSnapshots[0];
158  fNullSnapshots.clear();
159  fNullSnapshots.push_back( (RooArgSet*)paramPoint.snapshot() );
160  }
161 
162  vector<double> weights;
163  weights.push_back( weight );
164 
165  vector<double> impNLLs;
166  for( unsigned int i=0; i < fImportanceDensities.size(); i++ ) impNLLs.push_back( 0.0 );
167  vector<double> nullNLLs;
168  for( unsigned int i=0; i < fNullDensities.size(); i++ ) nullNLLs.push_back( 0.0 );
169 
170  RooAbsData *d = GenerateToyData( weights, impNLLs, nullNLLs );
171  weight = weights[0];
172  return d;
173 }
174 
175 ////////////////////////////////////////////////////////////////////////////////
176 
177 RooAbsData* ToyMCImportanceSampler::GenerateToyData(
178  RooArgSet& paramPoint,
179  double& weight,
180  vector<double>& impNLLs,
181  double& nullNLL
182 ) const {
183  if( fNullDensities.size() > 1 ) {
184  ooccoutI((TObject*)NULL,InputArguments) << "Null Densities:" << endl;
185  for( unsigned int i=0; i < fNullDensities.size(); i++) {
186  ooccoutI((TObject*)NULL,InputArguments) << " null density["<<i<<"]: " << fNullDensities[i] << " \t null snapshot["<<i<<"]: " << fNullSnapshots[i] << endl;
187  }
188  ooccoutE((TObject*)NULL,InputArguments) << "Cannot use multiple null densities and only ask for one weight and NLL." << endl;
189  return NULL;
190  }
191 
192  if( fNullDensities.size() == 0 && fPdf ) {
193  ooccoutI((TObject*)NULL,InputArguments) << "No explicit null densities specified. Going to add one based on the given paramPoint and the global fPdf. ... but cannot do that inside const function." << endl;
194  //AddNullDensity( fPdf, &paramPoint );
195  }
196 
197  ooccoutI((TObject*)NULL,InputArguments) << "Using given parameter point. Overwrites snapshot for the only null currently defined." << endl;
198  if(fNullSnapshots[0]) delete fNullSnapshots[0];
199  fNullSnapshots.clear();
200  fNullSnapshots.push_back( (const RooArgSet*)paramPoint.snapshot() );
201 
202  vector<double> weights;
203  weights.push_back( weight );
204 
205  vector<double> nullNLLs;
206  nullNLLs.push_back( nullNLL );
207 
208  RooAbsData *d = GenerateToyData( weights, impNLLs, nullNLLs );
209  weight = weights[0];
210  nullNLL = nullNLLs[0];
211  return d;
212 }
213 
214 ////////////////////////////////////////////////////////////////////////////////
215 
216 RooAbsData* ToyMCImportanceSampler::GenerateToyData(
217  vector<double>& weights
218 ) const {
219  if( fNullDensities.size() != weights.size() ) {
220  ooccoutI((TObject*)NULL,InputArguments) << "weights.size() != nullDesnities.size(). You need to provide a vector with the correct size." << endl;
221  //AddNullDensity( fPdf, &paramPoint );
222  }
223 
224  vector<double> impNLLs;
225  for( unsigned int i=0; i < fImportanceDensities.size(); i++ ) impNLLs.push_back( 0.0 );
226  vector<double> nullNLLs;
227  for( unsigned int i=0; i < fNullDensities.size(); i++ ) nullNLLs.push_back( 0.0 );
228 
229  RooAbsData *d = GenerateToyData( weights, impNLLs, nullNLLs );
230  return d;
231 }
232 
233 ////////////////////////////////////////////////////////////////////////////////
234 /// This method generates a toy data set for importance sampling for the given parameter point taking
235 /// global observables into account.
236 /// The values of the generated global observables remain in the pdf's variables.
237 /// They have to have those values for the subsequent evaluation of the
238 /// test statistics.
239 
240 RooAbsData* ToyMCImportanceSampler::GenerateToyData(
241  vector<double>& weights,
242  vector<double>& impNLLVals,
243  vector<double>& nullNLLVals
244 ) const {
245 
246 
247  ooccoutD((TObject*)0,InputArguments) << endl;
248  ooccoutD((TObject*)0,InputArguments) << "GenerateToyDataImportanceSampling" << endl;
249 
250  if(!fObservables) {
251  ooccoutE((TObject*)NULL,InputArguments) << "Observables not set." << endl;
252  return NULL;
253  }
254 
255  if( fNullDensities.size() == 0 ) {
256  oocoutE((TObject*)NULL,InputArguments) << "ToyMCImportanceSampler: Need to specify the null density explicitly." << endl;
257  return NULL;
258  }
259 
260  // catch the case when NLLs are not created (e.g. when ToyMCSampler was streamed for Proof)
261  if( fNullNLLs.size() == 0 && fNullDensities.size() > 0 ) {
262  for( unsigned int i = 0; i < fNullDensities.size(); i++ ) fNullNLLs.push_back( NULL );
263  }
264  if( fImpNLLs.size() == 0 && fImportanceDensities.size() > 0 ) {
265  for( unsigned int i = 0; i < fImportanceDensities.size(); i++ ) fImpNLLs.push_back( NULL );
266  }
267 
268  if( fNullDensities.size() != fNullNLLs.size() ) {
269  oocoutE((TObject*)NULL,InputArguments) << "ToyMCImportanceSampler: Something wrong. NullNLLs must be of same size as null densities." << endl;
270  return NULL;
271  }
272 
273  if( (!fGenerateFromNull && fIndexGenDensity >= fImportanceDensities.size()) ||
274  (fGenerateFromNull && fIndexGenDensity >= fNullDensities.size())
275  ) {
276  oocoutE((TObject*)NULL,InputArguments) << "ToyMCImportanceSampler: no importance density given or index out of range." << endl;
277  return NULL;
278  }
279 
280 
281  // paramPoint used to be given as parameter
282  // situation is clear when there is only one null.
283  // WHAT TO DO FOR MANY NULL DENSITIES?
284  RooArgSet paramPoint( *fNullSnapshots[0] );
285  //cout << "paramPoint: " << endl;
286  //paramPoint.Print("v");
287 
288 
289  // assign input paramPoint
290  RooArgSet* allVars = fPdf->getVariables();
291  *allVars = paramPoint;
292 
293 
294  // create nuisance parameter points
295  if(!fNuisanceParametersSampler && fPriorNuisance && fNuisancePars)
296  fNuisanceParametersSampler = new NuisanceParametersSampler(fPriorNuisance, fNuisancePars, fNToys, fExpectedNuisancePar);
297 
298  // generate global observables
299  RooArgSet observables(*fObservables);
300  if(fGlobalObservables && fGlobalObservables->getSize()) {
301  observables.remove(*fGlobalObservables);
302  // WHAT TODO FOR MANY NULL DENSITIES?
303  GenerateGlobalObservables(*fNullDensities[0]);
304  }
305 
306  // save values to restore later.
307  // but this must remain after(!) generating global observables
308  if( !fGenerateFromNull ) {
309  RooArgSet* allVarsImpDens = fImportanceDensities[fIndexGenDensity]->getVariables();
310  allVars->add(*allVarsImpDens);
311  delete allVarsImpDens;
312  }
313  const RooArgSet* saveVars = (const RooArgSet*)allVars->snapshot();
314 
315  double globalWeight = 1.0;
316  if(fNuisanceParametersSampler) { // use nuisance parameters?
317  // Construct a set of nuisance parameters that has the parameters
318  // in the input paramPoint removed. Therefore, no parameter in
319  // paramPoint is randomized.
320  // Therefore when a parameter is given (should be held fixed),
321  // but is also in the list of nuisance parameters, the parameter
322  // will be held fixed. This is useful for debugging to hold single
323  // parameters fixed although under "normal" circumstances it is
324  // randomized.
325  RooArgSet allVarsMinusParamPoint(*allVars);
326  allVarsMinusParamPoint.remove(paramPoint, kFALSE, kTRUE); // match by name
327 
328  // get nuisance parameter point and weight
329  fNuisanceParametersSampler->NextPoint(allVarsMinusParamPoint, globalWeight);
330  }
331  // populate input weights vector with this globalWeight
332  for( unsigned int i=0; i < weights.size(); i++ ) weights[i] = globalWeight;
333 
334  RooAbsData* data = NULL;
335  if( fGenerateFromNull ) {
336  //cout << "gen from null" << endl;
337  *allVars = *fNullSnapshots[fIndexGenDensity];
338  data = Generate(*fNullDensities[fIndexGenDensity], observables);
339  }else{
340  // need to be careful here not to overwrite the current state of the
341  // nuisance parameters, ie they must not be part of the snapshot
342  //cout << "gen from imp" << endl;
343  if(fImportanceSnapshots[fIndexGenDensity]) *allVars = *fImportanceSnapshots[fIndexGenDensity];
344  data = Generate(*fImportanceDensities[fIndexGenDensity], observables);
345  }
346  //cout << "data generated: " << data << endl;
347 
348  if (!data) {
349  oocoutE((TObject*)0,InputArguments) << "ToyMCImportanceSampler: error generating data" << endl;
350  return NULL;
351  }
352 
353 
354 
355  // Importance Sampling: adjust weight
356  // Sources: Alex Read, presentation by Michael Woodroofe
357 
358  ooccoutD((TObject*)0,InputArguments) << "About to create/calculate all nullNLLs." << endl;
359  for( unsigned int i=0; i < fNullDensities.size(); i++ ) {
360  //oocoutI((TObject*)0,InputArguments) << "Setting variables to nullSnapshot["<<i<<"]"<<endl;
361  //fNullSnapshots[i]->Print("v");
362 
363  *allVars = *fNullSnapshots[i];
364  if( !fNullNLLs[i] ) {
365  RooArgSet* allParams = fNullDensities[i]->getParameters(*data);
366  fNullNLLs[i] = fNullDensities[i]->createNLL(*data, RooFit::CloneData(kFALSE), RooFit::Constrain(*allParams),
367  RooFit::ConditionalObservables(fConditionalObs));
368  delete allParams;
369  }else{
370  fNullNLLs[i]->setData( *data, kFALSE );
371  }
372  nullNLLVals[i] = fNullNLLs[i]->getVal();
373  // FOR DEBuGGING!!!!!!!!!!!!!!!!!
374  if( !fReuseNLL ) { delete fNullNLLs[i]; fNullNLLs[i] = NULL; }
375  }
376 
377 
378  // for each null: find minNLLVal of null and all imp densities
379  ooccoutD((TObject*)0,InputArguments) << "About to find the minimum NLLs." << endl;
380  vector<double> minNLLVals;
381  for( unsigned int i=0; i < nullNLLVals.size(); i++ ) minNLLVals.push_back( nullNLLVals[i] );
382 
383  for( unsigned int i=0; i < fImportanceDensities.size(); i++ ) {
384  //oocoutI((TObject*)0,InputArguments) << "Setting variables to impSnapshot["<<i<<"]"<<endl;
385  //fImportanceSnapshots[i]->Print("v");
386 
387  if( fImportanceSnapshots[i] ) *allVars = *fImportanceSnapshots[i];
388  if( !fImpNLLs[i] ) {
389  RooArgSet* allParams = fImportanceDensities[i]->getParameters(*data);
390  fImpNLLs[i] = fImportanceDensities[i]->createNLL(*data, RooFit::CloneData(kFALSE), RooFit::Constrain(*allParams),
391  RooFit::ConditionalObservables(fConditionalObs));
392  delete allParams;
393  }else{
394  fImpNLLs[i]->setData( *data, kFALSE );
395  }
396  impNLLVals[i] = fImpNLLs[i]->getVal();
397  // FOR DEBuGGING!!!!!!!!!!!!!!!!!
398  if( !fReuseNLL ) { delete fImpNLLs[i]; fImpNLLs[i] = NULL; }
399 
400  for( unsigned int j=0; j < nullNLLVals.size(); j++ ) {
401  if( impNLLVals[i] < minNLLVals[j] ) minNLLVals[j] = impNLLVals[i];
402  ooccoutD((TObject*)0,InputArguments) << "minNLLVals["<<j<<"]: " << minNLLVals[j] << " nullNLLVals["<<j<<"]: " << nullNLLVals[j] << " impNLLVals["<<i<<"]: " << impNLLVals[i] << endl;
403  }
404  }
405 
406  // veto toys: this is a sort of "overlap removal" of the various distributions
407  // if not vetoed: apply weight
408  ooccoutD((TObject*)0,InputArguments) << "About to apply vetos and calculate weights." << endl;
409  for( unsigned int j=0; j < nullNLLVals.size(); j++ ) {
410  if ( fApplyVeto && fGenerateFromNull && minNLLVals[j] != nullNLLVals[j] ) weights[j] = 0.0;
411  else if( fApplyVeto && !fGenerateFromNull && minNLLVals[j] != impNLLVals[fIndexGenDensity] ) weights[j] = 0.0;
412  else if( !fGenerateFromNull ) {
413  // apply (for fImportanceGenNorm, the weight is one, so nothing needs to be done here)
414 
415  // L(pdf) / L(imp) = exp( NLL(imp) - NLL(pdf) )
416  weights[j] *= exp(minNLLVals[j] - nullNLLVals[j]);
417  }
418 
419  ooccoutD((TObject*)0,InputArguments) << "weights["<<j<<"]: " << weights[j] << endl;
420  }
421 
422 
423 
424  *allVars = *saveVars;
425  delete allVars;
426  delete saveVars;
427 
428  return data;
429 }
430 
431 ////////////////////////////////////////////////////////////////////////////////
432 /// poi has to be fitted beforehand. This function expects this to be the muhat value.
433 
434 int ToyMCImportanceSampler::CreateImpDensitiesForOnePOIAdaptively( RooAbsPdf& pdf, const RooArgSet& allPOI, RooRealVar& poi, double nStdDevOverlap, double poiValueForBackground ) {
435  // these might not necessarily be the same thing.
436  double impMaxMu = poi.getVal();
437 
438  // this includes the null
439  int n = 1;
440 
441  // check whether error is trustworthy
442  if( poi.getError() > 0.01 && poi.getError() < 5.0 ) {
443  n = TMath::CeilNint( poi.getVal() / (2.*nStdDevOverlap*poi.getError()) ); // round up
444  oocoutI((TObject*)0,InputArguments) << "Using fitFavoredMu and error to set the number of imp points" << endl;
445  oocoutI((TObject*)0,InputArguments) << "muhat: " << poi.getVal() << " optimize for distance: " << 2.*nStdDevOverlap*poi.getError() << endl;
446  oocoutI((TObject*)0,InputArguments) << "n = " << n << endl;
447  oocoutI((TObject*)0,InputArguments) << "This results in a distance of: " << impMaxMu / n << endl;
448  }
449 
450  // exclude the null, just return the number of importance snapshots
451  return CreateNImpDensitiesForOnePOI( pdf, allPOI, poi, n-1, poiValueForBackground);
452 }
453 
454 ////////////////////////////////////////////////////////////////////////////////
455 /// n is the number of importance densities
456 
457 int ToyMCImportanceSampler::CreateNImpDensitiesForOnePOI( RooAbsPdf& pdf, const RooArgSet& allPOI, RooRealVar& poi, int n, double poiValueForBackground ) {
458 
459  // these might not necessarily be the same thing.
460  double impMaxMu = poi.getVal();
461 
462  // create imp snapshots
463  if( impMaxMu > poiValueForBackground && n > 0 ) {
464  for( int i=1; i <= n; i++ ) {
465  poi.setVal( poiValueForBackground + (double)i/(n)*(impMaxMu - poiValueForBackground) );
466  oocoutI((TObject*)0,InputArguments) << endl << "create point with poi: " << endl;
467  poi.Print();
468 
469  // impSnaps without first snapshot because that is null hypothesis
470 
471  AddImportanceDensity( &pdf, &allPOI );
472  }
473  }
474 
475  return n;
476 }
477 
478 } // end namespace RooStats
virtual const char * GetName() const
Returns name of object.
Definition: TNamed.h:47
#define ooccoutI(o, a)
Definition: RooMsgService.h:51
virtual Bool_t add(const RooAbsCollection &col, Bool_t silent=kFALSE)
Add a collection of arguments to this collection by calling add() for each element in the source coll...
Definition: RooArgSet.h:86
RooCmdArg CloneData(Bool_t flag)
virtual Bool_t setIndex(Int_t index, Bool_t printError=kTRUE)
Set value by specifying the index code of the desired state.
Double_t getVal(const RooArgSet *set=0) const
Definition: RooAbsReal.h:64
#define oocoutI(o, a)
Definition: RooMsgService.h:44
int Int_t
Definition: RtypesCore.h:41
STL namespace.
ToyMCImportanceSampler is an extension of the ToyMCSampler for Importance Sampling.
#define ooccoutE(o, a)
Definition: RooMsgService.h:54
#define oocoutP(o, a)
Definition: RooMsgService.h:45
virtual RooAbsArg * addColumn(RooAbsArg &var, Bool_t adjustRange=kTRUE)
Add a column with the values of the given (function) argument to this dataset.
static TString Format(const char *fmt,...)
Static method which formats a string using a printf style format descriptor and return a TString...
Definition: TString.cxx:2286
#define oocoutE(o, a)
Definition: RooMsgService.h:47
double pow(double, double)
virtual void Print(Option_t *options=0) const
Print TNamed name and title.
Definition: RooAbsArg.h:227
virtual Double_t weight() const
Return event weight of current event.
RooRealVar represents a fundamental (non-derived) real valued object.
Definition: RooRealVar.h:36
virtual void setVal(Double_t value)
Set value of variable to &#39;value&#39;.
Definition: RooRealVar.cxx:204
Int_t getSize() const
RooAbsCollection * snapshot(Bool_t deepCopy=kTRUE) const
Take a snap shot of current collection contents: An owning collection is returned containing clones o...
RooAbsData is the common abstract base class for binned and unbinned datasets.
Definition: RooAbsData.h:37
RooDataSet is a container class to hold unbinned data.
Definition: RooDataSet.h:29
RooCategory represents a fundamental (non-derived) discrete value object.
Definition: RooCategory.h:24
virtual const RooArgSet * get(Int_t index) const
Return RooArgSet with coordinates of event &#39;index&#39;.
virtual void add(const RooArgSet &row, Double_t weight=1.0, Double_t weightError=0)
Add a data point, with its coordinates specified in the &#39;data&#39; argset, to the data set...
const Bool_t kFALSE
Definition: RtypesCore.h:88
#define d(i)
Definition: RSha256.hxx:102
Namespace for the RooStats classes.
Definition: Asimov.h:20
#define ClassImp(name)
Definition: Rtypes.h:359
#define ooccoutD(o, a)
Definition: RooMsgService.h:50
Mother of all ROOT objects.
Definition: TObject.h:37
virtual Bool_t remove(const RooAbsArg &var, Bool_t silent=kFALSE, Bool_t matchByNameOnly=kFALSE)
Remove the specified argument from our list.
RooAbsPdf is the abstract interface for all probability density functions The class provides hybrid a...
Definition: RooAbsPdf.h:41
Bool_t defineType(const char *label)
Define a state with given name, the lowest available positive integer is assigned as index...
double exp(double)
RooCmdArg ConditionalObservables(const RooArgSet &set)
Double_t getError() const
Definition: RooRealVar.h:53
const Bool_t kTRUE
Definition: RtypesCore.h:87
const Int_t n
Definition: legend1.C:16
Helper class for ToyMCSampler.
Definition: ToyMCSampler.h:39
Int_t CeilNint(Double_t x)
Definition: TMath.h:698
RooCmdArg Constrain(const RooArgSet &params)
virtual Int_t numEntries() const
Definition: RooAbsData.cxx:285
virtual const char * GetTitle() const
Returns title of object.
Definition: TNamed.h:48