ROOT 6.14/05 Reference Guide |
Generic Max Pooling Layer class.
This generic Max Pooling Layer Class represents a pooling layer of a CNN. It inherits all of the properties of the generic virtual base class VGeneralLayer. In addition to that, it contains a matrix of winning units.
The height and width of the weights and biases is set to 0, since this layer does not contain any weights.
Definition at line 54 of file MaxPoolLayer.h.
Public Types | |
using | Matrix_t = typename Architecture_t::Matrix_t |
using | Scalar_t = typename Architecture_t::Scalar_t |
Public Member Functions | |
TMaxPoolLayer (size_t BatchSize, size_t InputDepth, size_t InputHeight, size_t InputWidth, size_t Height, size_t Width, size_t OutputNSlices, size_t OutputNRows, size_t OutputNCols, size_t FrameHeight, size_t FrameWidth, size_t StrideRows, size_t StrideCols, Scalar_t DropoutProbability) | |
Constructor. More... | |
TMaxPoolLayer (TMaxPoolLayer< Architecture_t > *layer) | |
Copy the max pooling layer provided as a pointer. More... | |
TMaxPoolLayer (const TMaxPoolLayer &) | |
Copy constructor. More... | |
~TMaxPoolLayer () | |
Destructor. More... | |
virtual void | AddWeightsXMLTo (void *parent) |
Writes the information and the weights about the layer in an XML node. More... | |
void | Backward (std::vector< Matrix_t > &gradients_backward, const std::vector< Matrix_t > &activations_backward, std::vector< Matrix_t > &inp1, std::vector< Matrix_t > &inp2) |
Depending on the winning units determined during the Forward pass, it only forwards the derivatives to the right units in the previous layer. More... | |
void | Forward (std::vector< Matrix_t > &input, bool applyDropout=false) |
Computes activation of the layer for the given input. More... | |
Scalar_t | GetDropoutProbability () const |
size_t | GetFrameHeight () const |
size_t | GetFrameWidth () const |
const std::vector< Matrix_t > & | GetIndexMatrix () const |
Getters. More... | |
std::vector< Matrix_t > & | GetIndexMatrix () |
size_t | GetNLocalViewPixels () const |
size_t | GetNLocalViews () const |
size_t | GetStrideCols () const |
size_t | GetStrideRows () const |
void | Print () const |
Prints the info about the layer. More... | |
virtual void | ReadWeightsFromXML (void *parent) |
Read the information and the weights about the layer from XML node. More... | |
Public Member Functions inherited from TMVA::DNN::VGeneralLayer< Architecture_t > | |
VGeneralLayer (size_t BatchSize, size_t InputDepth, size_t InputHeight, size_t InputWidth, size_t Depth, size_t Height, size_t Width, size_t WeightsNSlices, size_t WeightsNRows, size_t WeightsNCols, size_t BiasesNSlices, size_t BiasesNRows, size_t BiasesNCols, size_t OutputNSlices, size_t OutputNRows, size_t OutputNCols, EInitialization Init) | |
Constructor. More... | |
VGeneralLayer (size_t BatchSize, size_t InputDepth, size_t InputHeight, size_t InputWidth, size_t Depth, size_t Height, size_t Width, size_t WeightsNSlices, std::vector< size_t > WeightsNRows, std::vector< size_t > WeightsNCols, size_t BiasesNSlices, std::vector< size_t > BiasesNRows, std::vector< size_t > BiasesNCols, size_t OutputNSlices, size_t OutputNRows, size_t OutputNCols, EInitialization Init) | |
General Constructor with different weights dimension. More... | |
VGeneralLayer (VGeneralLayer< Architecture_t > *layer) | |
Copy the layer provided as a pointer. More... | |
VGeneralLayer (const VGeneralLayer &) | |
Copy Constructor. More... | |
virtual | ~VGeneralLayer () |
Virtual Destructor. More... | |
void | CopyBiases (const std::vector< Matrix_t > &otherBiases) |
Copies the biases provided as an input. More... | |
void | CopyWeights (const std::vector< Matrix_t > &otherWeights) |
Copies the weights provided as an input. More... | |
const std::vector< Matrix_t > & | GetActivationGradients () const |
std::vector< Matrix_t > & | GetActivationGradients () |
Matrix_t & | GetActivationGradientsAt (size_t i) |
const Matrix_t & | GetActivationGradientsAt (size_t i) const |
size_t | GetBatchSize () const |
Getters. More... | |
const std::vector< Matrix_t > & | GetBiases () const |
std::vector< Matrix_t > & | GetBiases () |
const Matrix_t & | GetBiasesAt (size_t i) const |
Matrix_t & | GetBiasesAt (size_t i) |
const std::vector< Matrix_t > & | GetBiasGradients () const |
std::vector< Matrix_t > & | GetBiasGradients () |
const Matrix_t & | GetBiasGradientsAt (size_t i) const |
Matrix_t & | GetBiasGradientsAt (size_t i) |
size_t | GetDepth () const |
size_t | GetHeight () const |
EInitialization | GetInitialization () const |
size_t | GetInputDepth () const |
size_t | GetInputHeight () const |
size_t | GetInputWidth () const |
const std::vector< Matrix_t > & | GetOutput () const |
std::vector< Matrix_t > & | GetOutput () |
Matrix_t & | GetOutputAt (size_t i) |
const Matrix_t & | GetOutputAt (size_t i) const |
const std::vector< Matrix_t > & | GetWeightGradients () const |
std::vector< Matrix_t > & | GetWeightGradients () |
const Matrix_t & | GetWeightGradientsAt (size_t i) const |
Matrix_t & | GetWeightGradientsAt (size_t i) |
const std::vector< Matrix_t > & | GetWeights () const |
std::vector< Matrix_t > & | GetWeights () |
const Matrix_t & | GetWeightsAt (size_t i) const |
Matrix_t & | GetWeightsAt (size_t i) |
size_t | GetWidth () const |
void | Initialize () |
Initialize the weights and biases according to the given initialization method. More... | |
bool | IsTraining () const |
void | ReadMatrixXML (void *node, const char *name, Matrix_t &matrix) |
void | SetBatchSize (size_t batchSize) |
Setters. More... | |
void | SetDepth (size_t depth) |
void | SetHeight (size_t height) |
void | SetInputDepth (size_t inputDepth) |
void | SetInputHeight (size_t inputHeight) |
void | SetInputWidth (size_t inputWidth) |
void | SetIsTraining (bool isTraining) |
void | SetWidth (size_t width) |
void | Update (const Scalar_t learningRate) |
Updates the weights and biases, given the learning rate. More... | |
void | UpdateBiases (const std::vector< Matrix_t > &biasGradients, const Scalar_t learningRate) |
Updates the biases, given the gradients and the learning rate. More... | |
void | UpdateBiasGradients (const std::vector< Matrix_t > &biasGradients, const Scalar_t learningRate) |
Updates the bias gradients, given some other weight gradients and learning rate. More... | |
void | UpdateWeightGradients (const std::vector< Matrix_t > &weightGradients, const Scalar_t learningRate) |
Updates the weight gradients, given some other weight gradients and learning rate. More... | |
void | UpdateWeights (const std::vector< Matrix_t > &weightGradients, const Scalar_t learningRate) |
Updates the weights, given the gradients and the learning rate,. More... | |
void | WriteMatrixToXML (void *node, const char *name, const Matrix_t &matrix) |
void | WriteTensorToXML (void *node, const char *name, const std::vector< Matrix_t > &tensor) |
helper functions for XML More... | |
Private Attributes | |
Scalar_t | fDropoutProbability |
Probability that an input is active. More... | |
size_t | fFrameHeight |
The height of the frame. More... | |
size_t | fFrameWidth |
The width of the frame. More... | |
size_t | fNLocalViewPixels |
The number of pixels in one local image view. More... | |
size_t | fNLocalViews |
The number of local views in one image. More... | |
size_t | fStrideCols |
The number of column pixels to slid the filter each step. More... | |
size_t | fStrideRows |
The number of row pixels to slid the filter each step. More... | |
std::vector< Matrix_t > | indexMatrix |
Matrix of indices for the backward pass. More... | |
Additional Inherited Members | |
Protected Attributes inherited from TMVA::DNN::VGeneralLayer< Architecture_t > | |
std::vector< Matrix_t > | fActivationGradients |
Gradients w.r.t. the activations of this layer. More... | |
size_t | fBatchSize |
Batch size used for training and evaluation. More... | |
std::vector< Matrix_t > | fBiases |
The biases associated to the layer. More... | |
std::vector< Matrix_t > | fBiasGradients |
Gradients w.r.t. the bias values of the layer. More... | |
size_t | fDepth |
The depth of the layer. More... | |
size_t | fHeight |
The height of the layer. More... | |
EInitialization | fInit |
The initialization method. More... | |
size_t | fInputDepth |
The depth of the previous layer or input. More... | |
size_t | fInputHeight |
The height of the previous layer or input. More... | |
size_t | fInputWidth |
The width of the previous layer or input. More... | |
bool | fIsTraining |
Flag indicatig the mode. More... | |
std::vector< Matrix_t > | fOutput |
Activations of this layer. More... | |
std::vector< Matrix_t > | fWeightGradients |
Gradients w.r.t. the weights of the layer. More... | |
std::vector< Matrix_t > | fWeights |
The weights associated to the layer. More... | |
size_t | fWidth |
The width of this layer. More... | |
#include <TMVA/DNN/CNN/MaxPoolLayer.h>
using TMVA::DNN::CNN::TMaxPoolLayer< Architecture_t >::Matrix_t = typename Architecture_t::Matrix_t |
Definition at line 56 of file MaxPoolLayer.h.
using TMVA::DNN::CNN::TMaxPoolLayer< Architecture_t >::Scalar_t = typename Architecture_t::Scalar_t |
Definition at line 57 of file MaxPoolLayer.h.
TMVA::DNN::CNN::TMaxPoolLayer< Architecture_t >::TMaxPoolLayer | ( | size_t | BatchSize, |
size_t | InputDepth, | ||
size_t | InputHeight, | ||
size_t | InputWidth, | ||
size_t | Height, | ||
size_t | Width, | ||
size_t | OutputNSlices, | ||
size_t | OutputNRows, | ||
size_t | OutputNCols, | ||
size_t | FrameHeight, | ||
size_t | FrameWidth, | ||
size_t | StrideRows, | ||
size_t | StrideCols, | ||
Scalar_t | DropoutProbability | ||
) |
Constructor.
Definition at line 129 of file MaxPoolLayer.h.
TMVA::DNN::CNN::TMaxPoolLayer< Architecture_t >::TMaxPoolLayer | ( | TMaxPoolLayer< Architecture_t > * | layer | ) |
Copy the max pooling layer provided as a pointer.
Definition at line 146 of file MaxPoolLayer.h.
TMVA::DNN::CNN::TMaxPoolLayer< Architecture_t >::TMaxPoolLayer | ( | const TMaxPoolLayer< Architecture_t > & | layer | ) |
Copy constructor.
Definition at line 159 of file MaxPoolLayer.h.
TMVA::DNN::CNN::TMaxPoolLayer< Architecture_t >::~TMaxPoolLayer | ( | ) |
Destructor.
Definition at line 172 of file MaxPoolLayer.h.
|
virtual |
Writes the information and the weights about the layer in an XML node.
Implements TMVA::DNN::VGeneralLayer< Architecture_t >.
Definition at line 223 of file MaxPoolLayer.h.
|
virtual |
Depending on the winning units determined during the Forward pass, it only forwards the derivatives to the right units in the previous layer.
Must only be called directly at the corresponding call to Forward(...).
Implements TMVA::DNN::VGeneralLayer< Architecture_t >.
Definition at line 194 of file MaxPoolLayer.h.
|
virtual |
Computes activation of the layer for the given input.
The input must be in 3D tensor form with the different matrices corresponding to different events in the batch. It spatially downsamples the input matrices.
Implements TMVA::DNN::VGeneralLayer< Architecture_t >.
Definition at line 178 of file MaxPoolLayer.h.
|
inline |
Definition at line 124 of file MaxPoolLayer.h.
|
inline |
Definition at line 115 of file MaxPoolLayer.h.
|
inline |
Definition at line 116 of file MaxPoolLayer.h.
|
inline |
Getters.
Definition at line 112 of file MaxPoolLayer.h.
|
inline |
Definition at line 113 of file MaxPoolLayer.h.
|
inline |
Definition at line 121 of file MaxPoolLayer.h.
|
inline |
Definition at line 122 of file MaxPoolLayer.h.
|
inline |
Definition at line 119 of file MaxPoolLayer.h.
|
inline |
Definition at line 118 of file MaxPoolLayer.h.
|
virtual |
Prints the info about the layer.
Implements TMVA::DNN::VGeneralLayer< Architecture_t >.
Definition at line 205 of file MaxPoolLayer.h.
|
virtual |
Read the information and the weights about the layer from XML node.
Implements TMVA::DNN::VGeneralLayer< Architecture_t >.
Definition at line 237 of file MaxPoolLayer.h.
|
private |
Probability that an input is active.
Definition at line 71 of file MaxPoolLayer.h.
|
private |
The height of the frame.
Definition at line 62 of file MaxPoolLayer.h.
|
private |
The width of the frame.
Definition at line 63 of file MaxPoolLayer.h.
|
private |
The number of pixels in one local image view.
Definition at line 68 of file MaxPoolLayer.h.
|
private |
The number of local views in one image.
Definition at line 69 of file MaxPoolLayer.h.
|
private |
The number of column pixels to slid the filter each step.
Definition at line 66 of file MaxPoolLayer.h.
|
private |
The number of row pixels to slid the filter each step.
Definition at line 65 of file MaxPoolLayer.h.
|
private |
Matrix of indices for the backward pass.
Definition at line 60 of file MaxPoolLayer.h.