Logo ROOT   6.14/05
Reference Guide
mathmoreIntegration.C
Go to the documentation of this file.
1 /// \file
2 /// \ingroup tutorial_math
3 /// \notebook -nodraw
4 /// Example on the usage of the adaptive 1D integration algorithm of MathMore
5 /// it calculates the numerically cumulative integral of a distribution (like in this case the BreitWigner)
6 /// to execute the macro type it (you need to compile with AClic)
7 ///
8 /// ~~~{.cpp}
9 /// root[0] .x mathmoreIntegration.C+
10 /// ~~~
11 ///
12 /// This tutorials require having libMathMore built with ROOT.
13 ///
14 /// To build mathmore you need to have a version of GSL >= 1.8 installed in your system
15 /// The ROOT configure will automatically find GSL if the script gsl-config (from GSL) is in your PATH,.
16 /// otherwise you need to configure root with the options --gsl-incdir and --gsl-libdir.
17 ///
18 /// \macro_image
19 /// \macro_output
20 /// \macro_code
21 ///
22 /// \authors M. Slawinska, L. Moneta
23 
24 #include "TMath.h"
25 #include "TH1.h"
26 #include "TCanvas.h"
27 #include "TLegend.h"
28 
29 /*#include "TLabel.h"*/
30 #include "Math/Functor.h"
31 #include "Math/WrappedFunction.h"
32 #include "Math/IFunction.h"
33 #include "Math/Integrator.h"
34 #include <iostream>
35 
36 #include "TStopwatch.h"
37 #include "TF1.h"
38 
39 #include <limits>
40 
41 //!calculates exact integral of Breit Wigner distribution
42 //!and compares with existing methods
43 
44 int nc = 0;
45 double exactIntegral( double a, double b) {
46 
47  return (TMath::ATan(2*b)- TMath::ATan(2*a))/ TMath::Pi();
48 }
49 double func( double x){
50  nc++;
51  return TMath::BreitWigner(x);
52 }
53 
54 // TF1 requires the function to have the ( )( double *, double *) signature
55 double func2(const double *x, const double * = 0){
56  nc++;
57  return TMath::BreitWigner(x[0]);
58 }
59 
60 
61 
62 
63 void testIntegPerf(double x1, double x2, int n = 100000){
64 
65 
66  std::cout << "\n\n***************************************************************\n";
67  std::cout << "Test integration performances in interval [ " << x1 << " , " << x2 << " ]\n\n";
68 
69  TStopwatch timer;
70 
71  double dx = (x2-x1)/double(n);
72 
73  //ROOT::Math::Functor1D<ROOT::Math::IGenFunction> f1(& TMath::BreitWigner);
75 
76  timer.Start();
78  double s1 = 0.0;
79  nc = 0;
80  for (int i = 0; i < n; ++i) {
81  double x = x1 + dx*i;
82  s1+= ig.Integral(x1,x);
83  }
84  timer.Stop();
85  std::cout << "Time using ROOT::Math::Integrator :\t" << timer.RealTime() << std::endl;
86  std::cout << "Number of function calls = " << nc/n << std::endl;
87  int pr = std::cout.precision(18); std::cout << s1 << std::endl; std::cout.precision(pr);
88 
89 
90 
91  //TF1 *fBW = new TF1("fBW","TMath::BreitWigner(x)",x1, x2); // this is faster but cannot measure number of function calls
92  TF1 *fBW = new TF1("fBW",func2,x1, x2,0);
93 
94  timer.Start();
95  nc = 0;
96  double s2 = 0;
97  for (int i = 0; i < n; ++i) {
98  double x = x1 + dx*i;
99  s2+= fBW->Integral(x1,x );
100  }
101  timer.Stop();
102  std::cout << "Time using TF1::Integral :\t\t\t" << timer.RealTime() << std::endl;
103  std::cout << "Number of function calls = " << nc/n << std::endl;
104  pr = std::cout.precision(18); std::cout << s1 << std::endl; std::cout.precision(pr);
105 
106 
107 }
108 
109 void DrawCumulative(double x1, double x2, int n = 100){
110 
111  std::cout << "\n\n***************************************************************\n";
112  std::cout << "Drawing cumulatives of BreitWigner in interval [ " << x1 << " , " << x2 << " ]\n\n";
113 
114 
115  double dx = (x2-x1)/double(n);
116 
117  TH1D *cum0 = new TH1D("cum0", "", n, x1, x2); //exact cumulative
118  for (int i = 1; i <= n; ++i) {
119  double x = x1 + dx*i;
120  cum0->SetBinContent(i, exactIntegral(x1, x));
121 
122  }
123 
124  // alternative method using ROOT::Math::Functor class
125  ROOT::Math::Functor1D f1(& func);
126 
127 
129 
130  TH1D *cum1 = new TH1D("cum1", "", n, x1, x2);
131  for (int i = 1; i <= n; ++i) {
132  double x = x1 + dx*i;
133  cum1->SetBinContent(i, ig.Integral(x1,x));
134  }
135 
136 
137  TF1 *fBW = new TF1("fBW","TMath::BreitWigner(x, 0, 1)",x1, x2);
138 
139 
140  TH1D *cum2 = new TH1D("cum2", "", n, x1, x2);
141  for (int i = 1; i <= n; ++i) {
142  double x = x1 + dx*i;
143  cum2->SetBinContent(i, fBW->Integral(x1,x));
144  }
145 
146  TH1D *cum10 = new TH1D("cum10", "", n, x1, x2); //difference between 1 and exact
147  TH1D *cum20 = new TH1D("cum23", "", n, x1, x2); //difference between 2 and excact
148  for (int i = 1; i <= n; ++i) {
149  double delta = cum1->GetBinContent(i) - cum0->GetBinContent(i);
150  double delta2 = cum2->GetBinContent(i) - cum0->GetBinContent(i);
151  //std::cout << " diff for " << x << " is " << delta << " " << cum1->GetBinContent(i) << std::endl;
152  cum10->SetBinContent(i, delta );
154  cum20->SetBinContent(i, delta2 );
155  }
156 
157 
158  TCanvas *c1 = new TCanvas("c1","Integration example",20,10,800,500);
159  c1->Divide(2,1);
160  c1->Draw();
161 
162  cum0->SetLineColor(kBlack);
163  cum0->SetTitle("BreitWigner - the cumulative");
164  cum0->SetStats(0);
165  cum1->SetLineStyle(2);
166  cum2->SetLineStyle(3);
167  cum1->SetLineColor(kBlue);
168  cum2->SetLineColor(kRed);
169  c1->cd(1);
170  cum0->DrawCopy("h");
171  cum1->DrawCopy("same");
172  //cum2->DrawCopy("same");
173  cum2->DrawCopy("same");
174 
175  c1->cd(2);
176  cum10->SetTitle("Difference");
177  cum10->SetStats(0);
178  cum10->SetLineColor(kBlue);
179  cum10->Draw("e0");
180  cum20->SetLineColor(kRed);
181  cum20->Draw("hsame");
182 
183  TLegend * l = new TLegend(0.11, 0.8, 0.7 ,0.89);
184  l->AddEntry(cum10, "GSL integration - analytical ");
185  l->AddEntry(cum20, "TF1::Integral - analytical ");
186  l->Draw();
187 
188 
189  c1->Update();
190  std::cout << "\n***************************************************************\n";
191 
192 
193 }
194 
195 
196 
197 void mathmoreIntegration(double a = -2, double b = 2)
198 {
199  DrawCumulative(a, b);
200  testIntegPerf(a, b);
201 }
202 
Double_t BreitWigner(Double_t x, Double_t mean=0, Double_t gamma=1)
Calculate a Breit Wigner function with mean and gamma.
Definition: TMath.cxx:437
Double_t RealTime()
Stop the stopwatch (if it is running) and return the realtime (in seconds) passed between the start a...
Definition: TStopwatch.cxx:110
This class displays a legend box (TPaveText) containing several legend entries.
Definition: TLegend.h:23
void Start(Bool_t reset=kTRUE)
Start the stopwatch.
Definition: TStopwatch.cxx:58
return c1
Definition: legend1.C:41
Definition: Rtypes.h:59
virtual void Draw(Option_t *option="")
Draw this legend with its current attributes.
Definition: TLegend.cxx:423
Definition: Rtypes.h:58
virtual Double_t GetBinContent(Int_t bin) const
Return content of bin number bin.
Definition: TH1.cxx:4770
TVirtualPad * cd(Int_t subpadnumber=0)
Set current canvas & pad.
Definition: TCanvas.cxx:688
virtual TH1 * DrawCopy(Option_t *option="", const char *name_postfix="_copy") const
Copy this histogram and Draw in the current pad.
Definition: TH1.cxx:3021
virtual Double_t Integral(Double_t a, Double_t b, Double_t epsrel=1.e-12)
IntegralOneDim or analytical integral.
Definition: TF1.cxx:2409
Template class to wrap any C++ callable object which takes one argument i.e.
static const double x2[5]
void Stop()
Stop the stopwatch.
Definition: TStopwatch.cxx:77
Double_t x[n]
Definition: legend1.C:17
constexpr Double_t Pi()
Definition: TMath.h:38
virtual void SetBinError(Int_t bin, Double_t error)
Set the bin Error Note that this resets the bin eror option to be of Normal Type and for the non-empt...
Definition: TH1.cxx:8498
virtual void SetLineColor(Color_t lcolor)
Set the line color.
Definition: TAttLine.h:40
virtual void Draw(Option_t *option="")
Draw this histogram with options.
Definition: TH1.cxx:2974
auto * a
Definition: textangle.C:12
virtual void SetBinContent(Int_t bin, Double_t content)
Set bin content see convention for numbering bins in TH1::GetBin In case the bin number is greater th...
Definition: TH1.cxx:8514
User Class for performing numerical integration of a function in one dimension.
Definition: Integrator.h:94
#define s1(x)
Definition: RSha256.hxx:91
1-D histogram with a double per channel (see TH1 documentation)}
Definition: TH1.h:610
REAL epsilon
Definition: triangle.c:617
constexpr Double_t E()
Base of natural log: .
Definition: TMath.h:97
The Canvas class.
Definition: TCanvas.h:31
static const double x1[5]
TLegendEntry * AddEntry(const TObject *obj, const char *label="", Option_t *option="lpf")
Add a new entry to this legend.
Definition: TLegend.cxx:330
virtual void SetLineStyle(Style_t lstyle)
Set the line style.
Definition: TAttLine.h:42
virtual void Draw(Option_t *option="")
Draw a canvas.
Definition: TCanvas.cxx:826
virtual void Divide(Int_t nx=1, Int_t ny=1, Float_t xmargin=0.01, Float_t ymargin=0.01, Int_t color=0)
Automatic pad generation by division.
Definition: TPad.cxx:1162
auto * l
Definition: textangle.C:4
1-Dim function class
Definition: TF1.h:211
TF1 * f1
Definition: legend1.C:11
you should not use this method at all Int_t Int_t Double_t Double_t Double_t Int_t Double_t Double_t Double_t Double_t b
Definition: TRolke.cxx:630
THist< 1, double, THistStatContent, THistStatUncertainty > TH1D
Definition: THist.hxx:284
Definition: Rtypes.h:59
virtual void SetTitle(const char *title)
See GetStatOverflows for more information.
Definition: TH1.cxx:6192
Functor1D class for one-dimensional functions.
Definition: Functor.h:487
virtual void Update()
Update canvas pad buffers.
Definition: TCanvas.cxx:2248
const Int_t n
Definition: legend1.C:16
virtual void SetStats(Bool_t stats=kTRUE)
Set statistics option on/off.
Definition: TH1.cxx:8284
Stopwatch class.
Definition: TStopwatch.h:28
Double_t ATan(Double_t)
Definition: TMath.h:674