Logo ROOT   6.16/01
Reference Guide
DataLoader.h
Go to the documentation of this file.
1// @(#)root/tmva $Id$
2// Author: Andreas Hoecker, Peter Speckmayer, Joerg Stelzer, Helge Voss, Kai Voss, Eckhard von Toerne, Jan Therhaag, Omar Zapata, Lorenzo Moneta, Sergei Gleyzer
3//NOTE: Based on TMVA::Factory
4
5/**********************************************************************************
6 * Project: TMVA - a Root-integrated toolkit for multivariate data analysis *
7 * Package: TMVA *
8 * Class : DataLoader *
9 * Web : http://tmva.sourceforge.net *
10 * *
11 * Description: *
12 * This is a class to load datasets into every booked method *
13 * *
14 * Authors (alphabetical): *
15 * Lorenzo Moneta <Lorenzo.Moneta@cern.ch> - CERN, Switzerland *
16 * Omar Zapata <andresete.chaos@gmail.com> - ITM/UdeA, Colombia *
17 * Sergei Gleyzer<sergei.gleyzer@cern.ch> - CERN, Switzerland *
18 * *
19 * Copyright (c) 2005-2011: *
20 * CERN, Switzerland *
21 * ITM/UdeA, Colombia *
22 * *
23 * Redistribution and use in source and binary forms, with or without *
24 * modification, are permitted according to the terms listed in LICENSE *
25 * (http://tmva.sourceforge.net/LICENSE) *
26 **********************************************************************************/
27
28#ifndef ROOT_TMVA_DataLoader
29#define ROOT_TMVA_DataLoader
30
31
32#include <string>
33#include <vector>
34#include <map>
35#include "TCut.h"
36
37#include "TMVA/Factory.h"
38#include "TMVA/Types.h"
39#include "TMVA/DataSet.h"
40
41class TFile;
42class TTree;
43class TDirectory;
44class TH2;
45
46namespace TMVA {
47
48 class CvSplit;
49 class DataInputHandler;
50 class DataSetInfo;
51 class DataSetManager;
52 class Envelope;
53 class MethodBase;
54 class IMethod;
55 class VariableTransformBase;
56 class VarTransformHandler;
57
58 class DataLoader : public Configurable {
59 friend class Factory;
60 friend class Envelope;
61 public:
62
63 DataLoader( TString thedlName="default");
64
65 // default destructor
66 virtual ~DataLoader();
67
68
69 // add events to training and testing trees
70 void AddSignalTrainingEvent ( const std::vector<Double_t>& event, Double_t weight = 1.0 );
71 void AddBackgroundTrainingEvent( const std::vector<Double_t>& event, Double_t weight = 1.0 );
72 void AddSignalTestEvent ( const std::vector<Double_t>& event, Double_t weight = 1.0 );
73 void AddBackgroundTestEvent ( const std::vector<Double_t>& event, Double_t weight = 1.0 );
74 void AddTrainingEvent( const TString& className, const std::vector<Double_t>& event, Double_t weight );
75 void AddTestEvent ( const TString& className, const std::vector<Double_t>& event, Double_t weight );
76 void AddEvent ( const TString& className, Types::ETreeType tt, const std::vector<Double_t>& event, Double_t weight );
79
83 DataLoader* VarTransform(TString trafoDefinition);
84
85 // special case: signal/background
86
87 // Data input related
88 void SetInputTrees( const TString& signalFileName, const TString& backgroundFileName,
89 Double_t signalWeight=1.0, Double_t backgroundWeight=1.0 );
90 void SetInputTrees( TTree* inputTree, const TCut& SigCut, const TCut& BgCut );
91 // Set input trees at once
93 Double_t signalWeight=1.0, Double_t backgroundWeight=1.0) ;
94
96 void AddSignalTree( TString datFileS, Double_t weight=1.0, Types::ETreeType treetype = Types::kMaxTreeType );
97 void AddSignalTree( TTree* signal, Double_t weight, const TString& treetype );
98
99 // ... depreciated, kept for backwards compatibility
100 void SetSignalTree( TTree* signal, Double_t weight=1.0);
101
103 void AddBackgroundTree( TString datFileB, Double_t weight=1.0, Types::ETreeType treetype = Types::kMaxTreeType );
104 void AddBackgroundTree( TTree* background, Double_t weight, const TString & treetype );
105
106 // ... depreciated, kept for backwards compatibility
107 void SetBackgroundTree( TTree* background, Double_t weight=1.0 );
108
109 void SetSignalWeightExpression( const TString& variable );
110 void SetBackgroundWeightExpression( const TString& variable );
111
112 // special case: regression
113 void AddRegressionTree( TTree* tree, Double_t weight = 1.0,
115 AddTree( tree, "Regression", weight, "", treetype );
116 }
117
118 // general
119
120 // Data input related
121 void SetTree( TTree* tree, const TString& className, Double_t weight ); // depreciated
122 void AddTree( TTree* tree, const TString& className, Double_t weight=1.0,
123 const TCut& cut = "",
125 void AddTree( TTree* tree, const TString& className, Double_t weight, const TCut& cut, const TString& treeType );
126
127 // set input variable
128 void SetInputVariables ( std::vector<TString>* theVariables ); // depreciated
129 void AddVariable ( const TString& expression, const TString& title, const TString& unit,
130 char type='F', Double_t min = 0, Double_t max = 0 );
131 void AddVariable ( const TString& expression, char type='F',
132 Double_t min = 0, Double_t max = 0 );
133 void AddTarget ( const TString& expression, const TString& title = "", const TString& unit = "",
134 Double_t min = 0, Double_t max = 0 );
135 void AddRegressionTarget( const TString& expression, const TString& title = "", const TString& unit = "",
136 Double_t min = 0, Double_t max = 0 )
137 {
138 AddTarget( expression, title, unit, min, max );
139 }
140 void AddSpectator ( const TString& expression, const TString& title = "", const TString& unit = "",
141 Double_t min = 0, Double_t max = 0 );
142
143 // set weight for class
144 void SetWeightExpression( const TString& variable, const TString& className = "" );
145
146 // set cut for class
147 void SetCut( const TString& cut, const TString& className = "" );
148 void SetCut( const TCut& cut, const TString& className = "" );
149 void AddCut( const TString& cut, const TString& className = "" );
150 void AddCut( const TCut& cut, const TString& className = "" );
151
152
153 // prepare input tree for training
154 void PrepareTrainingAndTestTree( const TCut& cut, const TString& splitOpt );
155 void PrepareTrainingAndTestTree( TCut sigcut, TCut bkgcut, const TString& splitOpt );
156
157 // ... deprecated, kept for backwards compatibility
158 void PrepareTrainingAndTestTree( const TCut& cut, Int_t Ntrain, Int_t Ntest = -1 );
159
160 void PrepareTrainingAndTestTree( const TCut& cut, Int_t NsigTrain, Int_t NbkgTrain, Int_t NsigTest, Int_t NbkgTest,
161 const TString& otherOpt="SplitMode=Random:!V" );
162
163 // Cross validation
164 void MakeKFoldDataSet(CvSplit & s);
167
169
170 TH2* GetCorrelationMatrix(const TString& className);
171
172 //Copy method use in VI and CV DEPRECATED: you can just call Clone DataLoader *dl2=(DataLoader *)dl1->Clone("dl2")
176
177 private:
178
179
182
183
184 private:
185
186 // data members
187
188
190
191
193
194 std::vector<TMVA::VariableTransformBase*> fDefaultTrfs; // list of transformations on default DataSet
195
196 // cd to local directory
197 TString fOptions; // option string given by construction (presently only "V")
198 TString fTransformations; // List of transformations to test
199 Bool_t fVerbose; // verbose mode
200
201 // flag determining the way training and test data are assigned to DataLoader
205 DataAssignType fDataAssignType; // flags for data assigning
206 std::vector<TTree*> fTrainAssignTree; // for each class: tmp tree if user wants to assign the events directly
207 std::vector<TTree*> fTestAssignTree; // for each class: tmp tree if user wants to assign the events directly
208
209 Int_t fATreeType = 0; // type of event (=classIndex)
210 Float_t fATreeWeight = 0.0; // weight of the event
211 std::vector<Float_t> fATreeEvent; // event variables
212
214
215 protected:
216
218 };
220} // namespace TMVA
221
222#endif
223
int Int_t
Definition: RtypesCore.h:41
unsigned int UInt_t
Definition: RtypesCore.h:42
bool Bool_t
Definition: RtypesCore.h:59
double Double_t
Definition: RtypesCore.h:55
float Float_t
Definition: RtypesCore.h:53
#define ClassDef(name, id)
Definition: Rtypes.h:324
int type
Definition: TGX11.cxx:120
A specialized string object used for TTree selections.
Definition: TCut.h:25
Describe directory structure in memory.
Definition: TDirectory.h:34
A ROOT file is a suite of consecutive data records (TKey instances) with a well defined format.
Definition: TFile.h:48
Service class for 2-Dim histogram classes.
Definition: TH2.h:30
Class that contains all the data information.
DataInputHandler * fDataInputHandler
Definition: DataLoader.h:192
TTree * CreateEventAssignTrees(const TString &name)
create the data assignment tree (for event-wise data assignment by user)
Definition: DataLoader.cxx:201
Float_t fATreeWeight
Definition: DataLoader.h:210
std::vector< TTree * > fTrainAssignTree
Definition: DataLoader.h:206
void SetBackgroundTree(TTree *background, Double_t weight=1.0)
Definition: DataLoader.cxx:445
void AddSignalTree(TTree *signal, Double_t weight=1.0, Types::ETreeType treetype=Types::kMaxTreeType)
number of signal events (used to compute significance)
Definition: DataLoader.cxx:377
DataSetInfo & AddDataSet(DataSetInfo &)
Definition: DataLoader.cxx:126
void AddSpectator(const TString &expression, const TString &title="", const TString &unit="", Double_t min=0, Double_t max=0)
user inserts target in data set info
Definition: DataLoader.cxx:521
void SetInputTreesFromEventAssignTrees()
assign event-wise local trees to data set
Definition: DataLoader.cxx:325
void AddTrainingEvent(const TString &className, const std::vector< Double_t > &event, Double_t weight)
add signal training event
Definition: DataLoader.cxx:266
void AddRegressionTree(TTree *tree, Double_t weight=1.0, Types::ETreeType treetype=Types::kMaxTreeType)
Definition: DataLoader.h:113
std::vector< TMVA::VariableTransformBase * > fDefaultTrfs
Definition: DataLoader.h:194
DataAssignType fDataAssignType
Definition: DataLoader.h:205
void SetTree(TTree *tree, const TString &className, Double_t weight)
set background tree
Definition: DataLoader.cxx:453
void AddSignalTestEvent(const std::vector< Double_t > &event, Double_t weight=1.0)
add signal testing event
Definition: DataLoader.cxx:242
std::vector< Float_t > fATreeEvent
Definition: DataLoader.h:211
DataSetInfo & DefaultDataSetInfo()
default creation
Definition: DataLoader.cxx:530
void AddBackgroundTestEvent(const std::vector< Double_t > &event, Double_t weight=1.0)
add signal training event
Definition: DataLoader.cxx:258
DataSetManager * fDataSetManager
Definition: DataLoader.h:189
DataLoader * MakeCopy(TString name)
Copy method use in VI and CV.
Definition: DataLoader.cxx:688
void SetSignalWeightExpression(const TString &variable)
Definition: DataLoader.cxx:546
void MakeKFoldDataSet(CvSplit &s)
Function required to split the training and testing datasets into a number of folds.
Definition: DataLoader.cxx:659
void SetWeightExpression(const TString &variable, const TString &className="")
Definition: DataLoader.cxx:560
void AddBackgroundTrainingEvent(const std::vector< Double_t > &event, Double_t weight=1.0)
add signal training event
Definition: DataLoader.cxx:250
void RecombineKFoldDataSet(CvSplit &s, Types::ETreeType tt=Types::kTraining)
Recombines the dataset.
Definition: DataLoader.cxx:680
DataLoader * VarTransform(TString trafoDefinition)
Transforms the variables and return a new DataLoader with the transformed variables.
Definition: DataLoader.cxx:153
void SetBackgroundWeightExpression(const TString &variable)
Definition: DataLoader.cxx:553
void AddCut(const TString &cut, const TString &className="")
Definition: DataLoader.cxx:585
void AddEvent(const TString &className, Types::ETreeType tt, const std::vector< Double_t > &event, Double_t weight)
add event vector event : the order of values is: variables + targets + spectators
Definition: DataLoader.cxx:283
DataLoader(TString thedlName="default")
Definition: DataLoader.cxx:87
void PrepareTrainingAndTestTree(const TCut &cut, const TString &splitOpt)
prepare the training and test trees -> same cuts for signal and background
Definition: DataLoader.cxx:629
DataInputHandler & DataInput()
Definition: DataLoader.h:175
void AddBackgroundTree(TTree *background, Double_t weight=1.0, Types::ETreeType treetype=Types::kMaxTreeType)
number of signal events (used to compute significance)
Definition: DataLoader.cxx:408
DataSetInfo & GetDataSetInfo()
Definition: DataLoader.cxx:144
void AddTarget(const TString &expression, const TString &title="", const TString &unit="", Double_t min=0, Double_t max=0)
user inserts target in data set info
Definition: DataLoader.cxx:509
TH2 * GetCorrelationMatrix(const TString &className)
returns the correlation matrix of datasets
Definition: DataLoader.cxx:714
friend void DataLoaderCopy(TMVA::DataLoader *des, TMVA::DataLoader *src)
Bool_t UserAssignEvents(UInt_t clIndex)
Definition: DataLoader.cxx:317
void AddSignalTrainingEvent(const std::vector< Double_t > &event, Double_t weight=1.0)
add signal training event
Definition: DataLoader.cxx:234
void AddRegressionTarget(const TString &expression, const TString &title="", const TString &unit="", Double_t min=0, Double_t max=0)
Definition: DataLoader.h:135
void AddTestEvent(const TString &className, const std::vector< Double_t > &event, Double_t weight)
add signal test event
Definition: DataLoader.cxx:274
void SetSignalTree(TTree *signal, Double_t weight=1.0)
Definition: DataLoader.cxx:438
TString fTransformations
Definition: DataLoader.h:198
void SetInputTrees(const TString &signalFileName, const TString &backgroundFileName, Double_t signalWeight=1.0, Double_t backgroundWeight=1.0)
Definition: DataLoader.cxx:470
virtual ~DataLoader()
Definition: DataLoader.cxx:103
void AddTree(TTree *tree, const TString &className, Double_t weight=1.0, const TCut &cut="", Types::ETreeType tt=Types::kMaxTreeType)
Definition: DataLoader.cxx:357
const DataSetInfo & GetDefaultDataSetInfo()
Definition: DataLoader.h:168
TString fOptions
Definition: DataLoader.h:197
void SetInputVariables(std::vector< TString > *theVariables)
fill input variables in data set
Definition: DataLoader.cxx:538
std::vector< TTree * > fTestAssignTree
Definition: DataLoader.h:207
Types::EAnalysisType fAnalysisType
Definition: DataLoader.h:213
void SetCut(const TString &cut, const TString &className="")
Definition: DataLoader.cxx:572
void AddVariable(const TString &expression, const TString &title, const TString &unit, char type='F', Double_t min=0, Double_t max=0)
user inserts discriminating variable in data set info
Definition: DataLoader.cxx:491
void PrepareFoldDataSet(CvSplit &s, UInt_t foldNumber, Types::ETreeType tt=Types::kTraining)
Function for assigning the correct folds to the testing or training set.
Definition: DataLoader.cxx:667
Class that contains all the data information.
Definition: DataSetInfo.h:60
Class that contains all the data information.
Abstract base class for all high level ml algorithms, you can book ml methods like BDT,...
Definition: Envelope.h:44
This is the main MVA steering class.
Definition: Factory.h:81
EAnalysisType
Definition: Types.h:127
@ kMaxTreeType
Definition: Types.h:146
@ kTraining
Definition: Types.h:144
Basic string class.
Definition: TString.h:131
A TTree object has a header with a name and a title.
Definition: TTree.h:71
static constexpr double s
Abstract ClassifierFactory template that handles arbitrary types.
void DataLoaderCopy(TMVA::DataLoader *des, TMVA::DataLoader *src)
Definition: tree.py:1
auto * tt
Definition: textangle.C:16