119 Log() << kFATAL <<
"Please implement writing of weights as XML" <<
Endl;
137 NoErrorCalc(err, errUpper);
147 fout <<
" // not implemented for class: \"" << className <<
"\"" << std::endl;
148 fout <<
"};" << std::endl;
#define REGISTER_METHOD(CLASS)
for example
Class that contains all the data information.
Virtual base Class for all MVA method.
Description of bayesian classifiers.
void GetHelpMessage() const
get help message text
void ProcessOptions()
the option string is decoded, for available options see "DeclareOptions"
virtual ~MethodBayesClassifier(void)
destructor
Double_t GetMvaValue(Double_t *err=0, Double_t *errUpper=0)
returns MVA value for given event
void MakeClassSpecific(std::ostream &, const TString &) const
write specific classifier response
void ReadWeightsFromStream(std::istream &istr)
read back the training results from a file (stream)
void AddWeightsXMLTo(void *parent) const
void DeclareOptions()
define the options (their key words) that can be set in the option string
void Train(void)
some training
MethodBayesClassifier(const TString &jobName, const TString &methodTitle, DataSetInfo &theData, const TString &theOption="")
standard constructor
virtual Bool_t HasAnalysisType(Types::EAnalysisType type, UInt_t numberClasses, UInt_t numberTargets)
Variable can handle classification with 2 classes.
void Init(void)
default initialisation
Singleton class for Global types used by TMVA.
Abstract ClassifierFactory template that handles arbitrary types.
MsgLogger & Endl(MsgLogger &ml)