Logo ROOT   6.18/05
Reference Guide
LorentzRotation.h
Go to the documentation of this file.
1// @(#)root/mathcore:$Id$
2// Authors: W. Brown, M. Fischler, L. Moneta 2005
3
4 /**********************************************************************
5 * *
6 * Copyright (c) 2005 ROOT MathLib Team *
7 * *
8 * *
9 **********************************************************************/
10
11// Header file for LorentzRotation
12//
13// Created by: Mark Fischler Mon Aug 8 2005
14//
15// Last update: $Id$
16//
17#ifndef ROOT_Math_GenVector_LorentzRotation
18#define ROOT_Math_GenVector_LorentzRotation 1
19
21
24
36
37namespace ROOT {
38
39 namespace Math {
40
41//__________________________________________________________________________________________
42 /**
43 Lorentz transformation class with the (4D) transformation represented by
44 a 4x4 orthosymplectic matrix.
45 See also Boost, BoostX, BoostY and BoostZ for classes representing
46 specialized Lorentz transformations.
47 Also, the 3-D rotation classes can be considered to be special Lorentz
48 transformations which do not mix space and time components.
49
50 @ingroup GenVector
51
52 */
53
55
56public:
57
58 typedef double Scalar;
59
61 kXX = 0, kXY = 1, kXZ = 2, kXT = 3
62 , kYX = 4, kYY = 5, kYZ = 6, kYT = 7
63 , kZX = 8, kZY = 9, kZZ = 10, kZT = 11
64 , kTX = 12, kTY = 13, kTZ = 14, kTT = 15
65 };
66
67 // ========== Constructors and Assignment =====================
68
69 /**
70 Default constructor (identity transformation)
71 */
73
74 /**
75 Construct given a pair of pointers or iterators defining the
76 beginning and end of an array of sixteen Scalars
77 */
78 template<class IT>
79 LorentzRotation(IT begin, IT end) { SetComponents(begin,end); }
80
81 // The compiler-generated and dtor are OK but we have implementwd the copy-ctor and
82 // assignment operators since we have a template assignment
83
84 /**
85 Copy constructor
86 */
88 *this = r;
89 }
90
91 /**
92 Construct from a pure boost
93 */
94 explicit LorentzRotation( Boost const & b ) { b.GetLorentzRotation( fM+0 ); }
95 explicit LorentzRotation( BoostX const & bx ) { bx.GetLorentzRotation( fM+0 ); }
96 explicit LorentzRotation( BoostY const & by ) { by.GetLorentzRotation( fM+0 ); }
97 explicit LorentzRotation( BoostZ const & bz ) { bz.GetLorentzRotation( fM+0 ); }
98
99 /**
100 Construct from a 3-D rotation (no space-time mixing)
101 */
102 explicit LorentzRotation( Rotation3D const & r );
103 explicit LorentzRotation( AxisAngle const & a );
104 explicit LorentzRotation( EulerAngles const & e );
105 explicit LorentzRotation( Quaternion const & q );
106 explicit LorentzRotation( RotationX const & r );
107 explicit LorentzRotation( RotationY const & r );
108 explicit LorentzRotation( RotationZ const & r );
109
110 /**
111 Construct from a linear algebra matrix of size at least 4x4,
112 which must support operator()(i,j) to obtain elements (0,3) thru (3,3).
113 Precondition: The matrix is assumed to be orthosymplectic. NO checking
114 or re-adjusting is performed.
115 Note: (0,0) refers to the XX component; (3,3) refers to the TT component.
116 */
117 template<class ForeignMatrix>
118 explicit LorentzRotation(const ForeignMatrix & m) { SetComponents(m); }
119
120 /**
121 Construct from four orthosymplectic vectors (which must have methods
122 x(), y(), z() and t()) which will be used as the columns of the Lorentz
123 rotation matrix. The orthosymplectic conditions will be checked, and
124 values adjusted so that the result will always be a good Lorentz rotation
125 matrix.
126 */
127 template<class Foreign4Vector>
128 LorentzRotation(const Foreign4Vector& v1,
129 const Foreign4Vector& v2,
130 const Foreign4Vector& v3,
131 const Foreign4Vector& v4 ) { SetComponents(v1, v2, v3, v4); }
132
133
134 /**
135 Raw constructor from sixteen Scalar components (without any checking)
136 */
138 Scalar yx, Scalar yy, Scalar yz, Scalar yt,
139 Scalar zx, Scalar zy, Scalar zz, Scalar zt,
140 Scalar tx, Scalar ty, Scalar tz, Scalar tt)
141 {
142 SetComponents (xx, xy, xz, xt,
143 yx, yy, yz, yt,
144 zx, zy, zz, zt,
145 tx, ty, tz, tt);
146 }
147
148 /**
149 Assign from another LorentzRotation
150 */
152 operator=( LorentzRotation const & rhs ) {
153 SetComponents( rhs.fM[0], rhs.fM[1], rhs.fM[2], rhs.fM[3],
154 rhs.fM[4], rhs.fM[5], rhs.fM[6], rhs.fM[7],
155 rhs.fM[8], rhs.fM[9], rhs.fM[10], rhs.fM[11],
156 rhs.fM[12], rhs.fM[13], rhs.fM[14], rhs.fM[15] );
157 return *this;
158 }
159
160 /**
161 Assign from a pure boost
162 */
164 operator=( Boost const & b ) { return operator=(LorentzRotation(b)); }
166 operator=( BoostX const & b ) { return operator=(LorentzRotation(b)); }
168 operator=( BoostY const & b ) { return operator=(LorentzRotation(b)); }
170 operator=( BoostZ const & b ) { return operator=(LorentzRotation(b)); }
171
172 /**
173 Assign from a 3-D rotation
174 */
189
190 /**
191 Assign from a linear algebra matrix of size at least 4x4,
192 which must support operator()(i,j) to obtain elements (0,3) thru (3,3).
193 Precondition: The matrix is assumed to be orthosymplectic. NO checking
194 or re-adjusting is performed.
195 */
196 template<class ForeignMatrix>
198 operator=(const ForeignMatrix & m) {
199 SetComponents( m(0,0), m(0,1), m(0,2), m(0,3),
200 m(1,0), m(1,1), m(1,2), m(1,3),
201 m(2,0), m(2,1), m(2,2), m(2,3),
202 m(3,0), m(3,1), m(3,2), m(3,3) );
203 return *this;
204 }
205
206 /**
207 Re-adjust components to eliminate small deviations from a perfect
208 orthosyplectic matrix.
209 */
210 void Rectify();
211
212 // ======== Components ==============
213
214 /**
215 Set components from four orthosymplectic vectors (which must have methods
216 x(), y(), z(), and t()) which will be used as the columns of the
217 Lorentz rotation matrix. The values will be adjusted
218 so that the result will always be a good Lorentz rotation matrix.
219 */
220 template<class Foreign4Vector>
221 void
222 SetComponents (const Foreign4Vector& v1,
223 const Foreign4Vector& v2,
224 const Foreign4Vector& v3,
225 const Foreign4Vector& v4 ) {
226 fM[kXX]=v1.x(); fM[kXY]=v2.x(); fM[kXZ]=v3.x(); fM[kXT]=v4.x();
227 fM[kYX]=v1.y(); fM[kYY]=v2.y(); fM[kYZ]=v3.y(); fM[kYT]=v4.y();
228 fM[kZX]=v1.z(); fM[kZY]=v2.z(); fM[kZZ]=v3.z(); fM[kZT]=v4.z();
229 fM[kTX]=v1.t(); fM[kTY]=v2.t(); fM[kTZ]=v3.t(); fM[kTT]=v4.t();
230 Rectify();
231 }
232
233 /**
234 Get components into four 4-vectors which will be the (orthosymplectic)
235 columns of the rotation matrix. (The 4-vector class must have a
236 constructor from 4 Scalars used as x, y, z, t)
237 */
238 template<class Foreign4Vector>
239 void
240 GetComponents ( Foreign4Vector& v1,
241 Foreign4Vector& v2,
242 Foreign4Vector& v3,
243 Foreign4Vector& v4 ) const {
244 v1 = Foreign4Vector ( fM[kXX], fM[kYX], fM[kZX], fM[kTX] );
245 v2 = Foreign4Vector ( fM[kXY], fM[kYY], fM[kZY], fM[kTY] );
246 v3 = Foreign4Vector ( fM[kXZ], fM[kYZ], fM[kZZ], fM[kTZ] );
247 v4 = Foreign4Vector ( fM[kXT], fM[kYT], fM[kZT], fM[kTT] );
248 }
249
250 /**
251 Set the 16 matrix components given an iterator to the start of
252 the desired data, and another to the end (16 past start).
253 */
254 template<class IT>
255#ifndef NDEBUG
256 void SetComponents(IT begin, IT end) {
257#else
258 void SetComponents(IT begin, IT ) {
259#endif
260 for (int i = 0; i <16; ++i) {
261 fM[i] = *begin;
262 ++begin;
263 }
264 assert (end==begin);
265 }
266
267 /**
268 Get the 16 matrix components into data specified by an iterator begin
269 and another to the end of the desired data (16 past start).
270 */
271 template<class IT>
272#ifndef NDEBUG
273 void GetComponents(IT begin, IT end) const {
274#else
275 void GetComponents(IT begin, IT ) const {
276#endif
277 for (int i = 0; i <16; ++i) {
278 *begin = fM[i];
279 ++begin;
280 }
281 assert (end==begin);
282 }
283
284 /**
285 Get the 16 matrix components into data specified by an iterator begin
286 */
287 template<class IT>
288 void GetComponents(IT begin) const {
289 std::copy ( fM+0, fM+16, begin );
290 }
291
292 /**
293 Set components from a linear algebra matrix of size at least 4x4,
294 which must support operator()(i,j) to obtain elements (0,0) thru (3,3).
295 Precondition: The matrix is assumed to be orthosymplectic. NO checking
296 or re-adjusting is performed.
297 */
298 template<class ForeignMatrix>
299 void
300 SetRotationMatrix (const ForeignMatrix & m) {
301 fM[kXX]=m(0,0); fM[kXY]=m(0,1); fM[kXZ]=m(0,2); fM[kXT]=m(0,3);
302 fM[kYX]=m(1,0); fM[kYY]=m(1,1); fM[kYZ]=m(1,2); fM[kYT]=m(1,3);
303 fM[kZX]=m(2,0); fM[kZY]=m(2,1); fM[kZZ]=m(2,2); fM[kZT]=m(2,3);
304 fM[kTX]=m(3,0); fM[kTY]=m(3,1); fM[kTZ]=m(3,2); fM[kTT]=m(3,3);
305 }
306
307 /**
308 Get components into a linear algebra matrix of size at least 4x4,
309 which must support operator()(i,j) for write access to elements
310 (0,0) thru (3,3).
311 */
312 template<class ForeignMatrix>
313 void
314 GetRotationMatrix (ForeignMatrix & m) const {
315 m(0,0)=fM[kXX]; m(0,1)=fM[kXY]; m(0,2)=fM[kXZ]; m(0,3)=fM[kXT];
316 m(1,0)=fM[kYX]; m(1,1)=fM[kYY]; m(1,2)=fM[kYZ]; m(1,3)=fM[kYT];
317 m(2,0)=fM[kZX]; m(2,1)=fM[kZY]; m(2,2)=fM[kZZ]; m(2,3)=fM[kZT];
318 m(3,0)=fM[kTX]; m(3,1)=fM[kTY]; m(3,2)=fM[kTZ]; m(3,3)=fM[kTT];
319 }
320
321 /**
322 Set the components from sixteen scalars -- UNCHECKED for orthosymplectic
323 */
324 void
326 Scalar yx, Scalar yy, Scalar yz, Scalar yt,
327 Scalar zx, Scalar zy, Scalar zz, Scalar zt,
328 Scalar tx, Scalar ty, Scalar tz, Scalar tt) {
329 fM[kXX]=xx; fM[kXY]=xy; fM[kXZ]=xz; fM[kXT]=xt;
330 fM[kYX]=yx; fM[kYY]=yy; fM[kYZ]=yz; fM[kYT]=yt;
331 fM[kZX]=zx; fM[kZY]=zy; fM[kZZ]=zz; fM[kZT]=zt;
332 fM[kTX]=tx; fM[kTY]=ty; fM[kTZ]=tz; fM[kTT]=tt;
333 }
334
335 /**
336 Get the sixteen components into sixteen scalars
337 */
338 void
340 Scalar &yx, Scalar &yy, Scalar &yz, Scalar &yt,
341 Scalar &zx, Scalar &zy, Scalar &zz, Scalar &zt,
342 Scalar &tx, Scalar &ty, Scalar &tz, Scalar &tt) const {
343 xx=fM[kXX]; xy=fM[kXY]; xz=fM[kXZ]; xt=fM[kXT];
344 yx=fM[kYX]; yy=fM[kYY]; yz=fM[kYZ]; yt=fM[kYT];
345 zx=fM[kZX]; zy=fM[kZY]; zz=fM[kZZ]; zt=fM[kZT];
346 tx=fM[kTX]; ty=fM[kTY]; tz=fM[kTZ]; tt=fM[kTT];
347 }
348
349 // =========== operations ==============
350
351 /**
352 Lorentz transformation operation on a Minkowski ('Cartesian')
353 LorentzVector
354 */
357 Scalar x = v.Px();
358 Scalar y = v.Py();
359 Scalar z = v.Pz();
360 Scalar t = v.E();
362 ( fM[kXX]*x + fM[kXY]*y + fM[kXZ]*z + fM[kXT]*t
363 , fM[kYX]*x + fM[kYY]*y + fM[kYZ]*z + fM[kYT]*t
364 , fM[kZX]*x + fM[kZY]*y + fM[kZZ]*z + fM[kZT]*t
365 , fM[kTX]*x + fM[kTY]*y + fM[kTZ]*z + fM[kTT]*t );
366 }
367
368 /**
369 Lorentz transformation operation on a LorentzVector in any
370 coordinate system
371 */
372 template <class CoordSystem>
377 return LorentzVector<CoordSystem> ( r_xyzt );
378 }
379
380 /**
381 Lorentz transformation operation on an arbitrary 4-vector v.
382 Preconditions: v must implement methods x(), y(), z(), and t()
383 and the arbitrary vector type must have a constructor taking (x,y,z,t)
384 */
385 template <class Foreign4Vector>
386 Foreign4Vector
387 operator() (const Foreign4Vector & v) const {
390 return Foreign4Vector ( r_xyzt.X(), r_xyzt.Y(), r_xyzt.Z(), r_xyzt.T() );
391 }
392
393 /**
394 Overload operator * for rotation on a vector
395 */
396 template <class A4Vector>
397 inline
398 A4Vector operator* (const A4Vector & v) const
399 {
400 return operator()(v);
401 }
402
403 /**
404 Invert a Lorentz rotation in place
405 */
406 void Invert();
407
408 /**
409 Return inverse of a rotation
410 */
411 LorentzRotation Inverse() const;
412
413 // ========= Multi-Rotation Operations ===============
414
415 /**
416 Multiply (combine) this Lorentz rotation by another LorentzRotation
417 */
419
420 //#ifdef TODO_LATER
421 /**
422 Multiply (combine) this Lorentz rotation by a pure Lorentz boost
423 */
424 //TODO: implement directly in a more efficient way. Now are implemented
425 // going through another LorentzRotation
426 LorentzRotation operator * (const Boost & b) const { LorentzRotation tmp(b); return (*this)*tmp; }
427 LorentzRotation operator * (const BoostX & b) const { LorentzRotation tmp(b); return (*this)*tmp; }
428 LorentzRotation operator * (const BoostY & b) const { LorentzRotation tmp(b); return (*this)*tmp; }
429 LorentzRotation operator * (const BoostZ & b) const { LorentzRotation tmp(b); return (*this)*tmp; }
430
431 /**
432 Multiply (combine) this Lorentz rotation by a 3-D Rotation
433 */
434 LorentzRotation operator * (const Rotation3D & r) const { LorentzRotation tmp(r); return (*this)*tmp; }
435 LorentzRotation operator * (const AxisAngle & a) const { LorentzRotation tmp(a); return (*this)*tmp; }
436 LorentzRotation operator * (const EulerAngles & e) const { LorentzRotation tmp(e); return (*this)*tmp; }
437 LorentzRotation operator * (const Quaternion & q) const { LorentzRotation tmp(q); return (*this)*tmp; }
438 LorentzRotation operator * (const RotationX & rx) const { LorentzRotation tmp(rx); return (*this)*tmp; }
439 LorentzRotation operator * (const RotationY & ry) const { LorentzRotation tmp(ry); return (*this)*tmp; }
440 LorentzRotation operator * (const RotationZ & rz) const { LorentzRotation tmp(rz); return (*this)*tmp; }
441 //#endif
442
443 /**
444 Post-Multiply (on right) by another LorentzRotation, Boost, or
445 rotation : T = T*R
446 */
447 template <class R>
448 LorentzRotation & operator *= (const R & r) { return *this = (*this)*r; }
449
450 /**
451 Equality/inequality operators
452 */
453 bool operator == (const LorentzRotation & rhs) const {
454 for (unsigned int i=0; i < 16; ++i) {
455 if( fM[i] != rhs.fM[i] ) return false;
456 }
457 return true;
458 }
459 bool operator != (const LorentzRotation & rhs) const {
460 return ! operator==(rhs);
461 }
462
463private:
464
466
467}; // LorentzRotation
468
469// ============ Class LorentzRotation ends here ============
470
471
472/**
473 Stream Output and Input
474 */
475 // TODO - I/O should be put in the manipulator form
476
477std::ostream & operator<< (std::ostream & os, const LorentzRotation & r);
478
479// ============================================ vetted to here ============
480
481#ifdef NOTYET
482/**
483 Distance between two Lorentz rotations
484 */
485template <class R>
486inline
487typename Rotation3D::Scalar
488Distance ( const Rotation3D& r1, const R & r2) {return gv_detail::dist(r1,r2);}
489#endif
490
491} //namespace Math
492} //namespace ROOT
493
494
495
496
497
498
499
500#endif /* ROOT_Math_GenVector_LorentzRotation */
SVector< double, 2 > v
Definition: Dict.h:5
ROOT::R::TRInterface & r
Definition: Object.C:4
#define b(i)
Definition: RSha256.hxx:100
#define R(a, b, c, d, e, f, g, h, i)
Definition: RSha256.hxx:110
#define e(i)
Definition: RSha256.hxx:103
XPoint xy[kMAXMK]
Definition: TGX11.cxx:122
float * q
Definition: THbookFile.cxx:87
AxisAngle class describing rotation represented with direction axis (3D Vector) and an angle of rotat...
Definition: AxisAngle.h:41
Class representing a Lorentz Boost along the X axis, by beta.
Definition: BoostX.h:37
void GetLorentzRotation(Scalar r[]) const
Get elements of internal 4x4 symmetric representation, into a data array suitable for direct use as t...
Definition: BoostX.cxx:56
Class representing a Lorentz Boost along the Y axis, by beta.
Definition: BoostY.h:37
void GetLorentzRotation(Scalar r[]) const
Get elements of internal 4x4 symmetric representation, into a data array suitable for direct use as t...
Definition: BoostY.cxx:55
Class representing a Lorentz Boost along the Z axis, by beta.
Definition: BoostZ.h:37
void GetLorentzRotation(Scalar r[]) const
Get elements of internal 4x4 symmetric representation, into a data array suitable for direct use as t...
Definition: BoostZ.cxx:56
Lorentz boost class with the (4D) transformation represented internally by a 4x4 orthosymplectic matr...
Definition: Boost.h:46
EulerAngles class describing rotation as three angles (Euler Angles).
Definition: EulerAngles.h:43
Lorentz transformation class with the (4D) transformation represented by a 4x4 orthosymplectic matrix...
A4Vector operator*(const A4Vector &v) const
Overload operator * for rotation on a vector.
LorentzRotation(IT begin, IT end)
Construct given a pair of pointers or iterators defining the beginning and end of an array of sixteen...
LorentzRotation & operator=(BoostY const &b)
void GetComponents(Scalar &xx, Scalar &xy, Scalar &xz, Scalar &xt, Scalar &yx, Scalar &yy, Scalar &yz, Scalar &yt, Scalar &zx, Scalar &zy, Scalar &zz, Scalar &zt, Scalar &tx, Scalar &ty, Scalar &tz, Scalar &tt) const
Get the sixteen components into sixteen scalars.
LorentzRotation(const Foreign4Vector &v1, const Foreign4Vector &v2, const Foreign4Vector &v3, const Foreign4Vector &v4)
Construct from four orthosymplectic vectors (which must have methods x(), y(), z() and t()) which wil...
LorentzVector< ROOT::Math::PxPyPzE4D< double > > operator()(const LorentzVector< ROOT::Math::PxPyPzE4D< double > > &v) const
Lorentz transformation operation on a Minkowski ('Cartesian') LorentzVector.
LorentzRotation & operator=(BoostX const &b)
LorentzRotation(BoostY const &by)
LorentzRotation(const ForeignMatrix &m)
Construct from a linear algebra matrix of size at least 4x4, which must support operator()(i,...
LorentzRotation Inverse() const
Return inverse of a rotation.
void GetRotationMatrix(ForeignMatrix &m) const
Get components into a linear algebra matrix of size at least 4x4, which must support operator()(i,...
void Rectify()
Re-adjust components to eliminate small deviations from a perfect orthosyplectic matrix.
LorentzRotation & operator=(RotationY const &r)
bool operator!=(const LorentzRotation &rhs) const
LorentzRotation & operator=(Boost const &b)
Assign from a pure boost.
bool operator==(const LorentzRotation &rhs) const
Equality/inequality operators.
LorentzRotation(BoostX const &bx)
LorentzRotation & operator=(Rotation3D const &r)
Assign from a 3-D rotation.
void GetComponents(Foreign4Vector &v1, Foreign4Vector &v2, Foreign4Vector &v3, Foreign4Vector &v4) const
Get components into four 4-vectors which will be the (orthosymplectic) columns of the rotation matrix...
LorentzRotation & operator=(AxisAngle const &a)
LorentzRotation(Boost const &b)
Construct from a pure boost.
LorentzRotation(BoostZ const &bz)
LorentzRotation & operator=(RotationZ const &r)
LorentzRotation(LorentzRotation const &r)
Copy constructor.
void GetComponents(IT begin) const
Get the 16 matrix components into data specified by an iterator begin.
void SetRotationMatrix(const ForeignMatrix &m)
Set components from a linear algebra matrix of size at least 4x4, which must support operator()(i,...
LorentzRotation(Scalar xx, Scalar xy, Scalar xz, Scalar xt, Scalar yx, Scalar yy, Scalar yz, Scalar yt, Scalar zx, Scalar zy, Scalar zz, Scalar zt, Scalar tx, Scalar ty, Scalar tz, Scalar tt)
Raw constructor from sixteen Scalar components (without any checking)
LorentzRotation & operator=(Quaternion const &q)
LorentzRotation & operator=(LorentzRotation const &rhs)
Assign from another LorentzRotation.
LorentzRotation & operator=(EulerAngles const &e)
LorentzRotation & operator=(BoostZ const &b)
void Invert()
Invert a Lorentz rotation in place.
LorentzRotation & operator=(const ForeignMatrix &m)
Assign from a linear algebra matrix of size at least 4x4, which must support operator()(i,...
LorentzRotation & operator*=(const R &r)
Post-Multiply (on right) by another LorentzRotation, Boost, or rotation : T = T*R.
void GetComponents(IT begin, IT end) const
Get the 16 matrix components into data specified by an iterator begin and another to the end of the d...
void SetComponents(IT begin, IT end)
Set the 16 matrix components given an iterator to the start of the desired data, and another to the e...
void SetComponents(Scalar xx, Scalar xy, Scalar xz, Scalar xt, Scalar yx, Scalar yy, Scalar yz, Scalar yt, Scalar zx, Scalar zy, Scalar zz, Scalar zt, Scalar tx, Scalar ty, Scalar tz, Scalar tt)
Set the components from sixteen scalars – UNCHECKED for orthosymplectic.
void SetComponents(const Foreign4Vector &v1, const Foreign4Vector &v2, const Foreign4Vector &v3, const Foreign4Vector &v4)
Set components from four orthosymplectic vectors (which must have methods x(), y(),...
LorentzRotation()
Default constructor (identity transformation)
LorentzRotation & operator=(RotationX const &r)
Class describing a 4D cartesian coordinate system (x, y, z, t coordinates) or momentum-energy vectors...
Definition: PxPyPzE4D.h:42
Rotation class with the (3D) rotation represented by a unit quaternion (u, i, j, k).
Definition: Quaternion.h:47
Rotation class with the (3D) rotation represented by a 3x3 orthogonal matrix.
Definition: Rotation3D.h:65
Rotation class representing a 3D rotation about the X axis by the angle of rotation.
Definition: RotationX.h:43
Rotation class representing a 3D rotation about the Y axis by the angle of rotation.
Definition: RotationY.h:43
Rotation class representing a 3D rotation about the Z axis by the angle of rotation.
Definition: RotationZ.h:43
Double_t y[n]
Definition: legend1.C:17
Double_t x[n]
Definition: legend1.C:17
Namespace for new Math classes and functions.
double dist(Rotation3D const &r1, Rotation3D const &r2)
Definition: 3DDistances.cxx:48
std::ostream & operator<<(std::ostream &os, const AxisAngle &a)
Stream Output and Input.
Definition: AxisAngle.cxx:91
AxisAngle::Scalar Distance(const AxisAngle &r1, const R &r2)
Distance between two rotations.
Definition: AxisAngle.h:326
Namespace for new ROOT classes and functions.
Definition: StringConv.hxx:21
auto * m
Definition: textangle.C:8
auto * tt
Definition: textangle.C:16
auto * a
Definition: textangle.C:12