Logo ROOT   6.18/05
Reference Guide
SpecFuncMathMore.cxx
Go to the documentation of this file.
1// @(#)root/mathmore:$Id$
2// Authors: L. Moneta, A. Zsenei 08/2005
3
4// Authors: Andras Zsenei & Lorenzo Moneta 06/2005
5
6/**********************************************************************
7 * *
8 * Copyright (c) 2005 , LCG ROOT MathLib Team *
9 * *
10 * *
11 **********************************************************************/
12
13#include <cmath>
14
15#ifndef PI
16#define PI 3.14159265358979323846264338328 /* pi */
17#endif
18
19
20#include "gsl/gsl_sf_bessel.h"
21#include "gsl/gsl_sf_legendre.h"
22#include "gsl/gsl_sf_laguerre.h"
23#include "gsl/gsl_sf_hyperg.h"
24#include "gsl/gsl_sf_ellint.h"
25//#include "gsl/gsl_sf_gamma.h"
26#include "gsl/gsl_sf_expint.h"
27#include "gsl/gsl_sf_zeta.h"
28#include "gsl/gsl_sf_airy.h"
29#include "gsl/gsl_sf_coupling.h"
30
31
32namespace ROOT {
33namespace Math {
34
35
36
37
38// [5.2.1.1] associated Laguerre polynomials
39// (26.x.12)
40
41double assoc_laguerre(unsigned n, double m, double x) {
42
43 return gsl_sf_laguerre_n(n, m, x);
44
45}
46
47
48
49// [5.2.1.2] associated Legendre functions
50// (26.x.8)
51
52double assoc_legendre(unsigned l, unsigned m, double x) {
53 // add (-1)^m
54 return (m%2 == 0) ? gsl_sf_legendre_Plm(l, m, x) : -gsl_sf_legendre_Plm(l, m, x);
55
56}
57
58
59
60
61
62// [5.2.1.4] (complete) elliptic integral of the first kind
63// (26.x.15.2)
64
65double comp_ellint_1(double k) {
66
67 return gsl_sf_ellint_Kcomp(k, GSL_PREC_DOUBLE);
68
69}
70
71
72
73// [5.2.1.5] (complete) elliptic integral of the second kind
74// (26.x.16.2)
75
76double comp_ellint_2(double k) {
77
78 return gsl_sf_ellint_Ecomp(k, GSL_PREC_DOUBLE);
79
80}
81
82
83
84// [5.2.1.6] (complete) elliptic integral of the third kind
85// (26.x.17.2)
86/**
87Complete elliptic integral of the third kind.
88
89There are two different definitions used for the elliptic
90integral of the third kind:
91
92\f[
93P(\phi,k,n) = \int_0^\phi \frac{dt}{(1 + n \sin^2{t})\sqrt{1 - k^2 \sin^2{t}}}
94\f]
95
96and
97
98\f[
99P(\phi,k,n) = \int_0^\phi \frac{dt}{(1 - n \sin^2{t})\sqrt{1 - k^2 \sin^2{t}}}
100\f]
101
102the former is adopted by
103
104- GSL
105 http://www.gnu.org/software/gsl/manual/gsl-ref_7.html#SEC95
106
107- Planetmath
108 http://planetmath.org/encyclopedia/EllipticIntegralsAndJacobiEllipticFunctions.html
109
110- CERNLIB
111 https://cern-tex.web.cern.ch/cern-tex/shortwrupsdir/c346/top.html
112
113 while the latter is used by
114
115- Abramowitz and Stegun
116
117- Mathematica
118 http://mathworld.wolfram.com/EllipticIntegraloftheThirdKind.html
119
120- C++ standard
121 http://www.open-std.org/jtc1/sc22/wg21/docs/papers/2004/n1687.pdf
122
123 in order to be C++ compliant, we decided to use the latter, hence the
124 change of the sign in the function call to GSL.
125
126 */
127
128double comp_ellint_3(double n, double k) {
129
130 return gsl_sf_ellint_P(PI/2.0, k, -n, GSL_PREC_DOUBLE);
131
132}
133
134
135
136// [5.2.1.7] confluent hypergeometric functions
137// (26.x.14)
138
139double conf_hyperg(double a, double b, double z) {
140
141 return gsl_sf_hyperg_1F1(a, b, z);
142
143}
144
145// confluent hypergeometric functions of second type
146
147double conf_hypergU(double a, double b, double z) {
148
149 return gsl_sf_hyperg_U(a, b, z);
150
151}
152
153
154
155// [5.2.1.8] regular modified cylindrical Bessel functions
156// (26.x.4.1)
157
158double cyl_bessel_i(double nu, double x) {
159
160 return gsl_sf_bessel_Inu(nu, x);
161
162}
163
164
165
166// [5.2.1.9] cylindrical Bessel functions (of the first kind)
167// (26.x.2)
168
169double cyl_bessel_j(double nu, double x) {
170
171 return gsl_sf_bessel_Jnu(nu, x);
172
173}
174
175
176
177// [5.2.1.10] irregular modified cylindrical Bessel functions
178// (26.x.4.2)
179
180double cyl_bessel_k(double nu, double x) {
181
182 return gsl_sf_bessel_Knu(nu, x);
183
184}
185
186
187
188// [5.2.1.11] cylindrical Neumann functions;
189// cylindrical Bessel functions (of the second kind)
190// (26.x.3)
191
192double cyl_neumann(double nu, double x) {
193
194 return gsl_sf_bessel_Ynu(nu, x);
195
196}
197
198
199
200// [5.2.1.12] (incomplete) elliptic integral of the first kind
201// phi in radians
202// (26.x.15.1)
203
204double ellint_1(double k, double phi) {
205
206 return gsl_sf_ellint_F(phi, k, GSL_PREC_DOUBLE);
207
208}
209
210
211
212// [5.2.1.13] (incomplete) elliptic integral of the second kind
213// phi in radians
214// (26.x.16.1)
215
216double ellint_2(double k, double phi) {
217
218 return gsl_sf_ellint_E(phi, k, GSL_PREC_DOUBLE);
219
220}
221
222
223
224// [5.2.1.14] (incomplete) elliptic integral of the third kind
225// phi in radians
226// (26.x.17.1)
227/**
228
229Incomplete elliptic integral of the third kind.
230
231There are two different definitions used for the elliptic
232integral of the third kind:
233
234\f[
235P(\phi,k,n) = \int_0^\phi \frac{dt}{(1 + n \sin^2{t})\sqrt{1 - k^2 \sin^2{t}}}
236\f]
237
238and
239
240\f[
241P(\phi,k,n) = \int_0^\phi \frac{dt}{(1 - n \sin^2{t})\sqrt{1 - k^2 \sin^2{t}}}
242\f]
243
244the former is adopted by
245
246- GSL
247 http://www.gnu.org/software/gsl/manual/gsl-ref_7.html#SEC95
248
249- Planetmath
250 http://planetmath.org/encyclopedia/EllipticIntegralsAndJacobiEllipticFunctions.html
251
252- CERNLIB
253 https://cern-tex.web.cern.ch/cern-tex/shortwrupsdir/c346/top.html
254
255 while the latter is used by
256
257- Abramowitz and Stegun
258
259- Mathematica
260 http://mathworld.wolfram.com/EllipticIntegraloftheThirdKind.html
261
262- C++ standard
263 http://www.open-std.org/jtc1/sc22/wg21/docs/papers/2004/n1687.pdf
264
265 in order to be C++ compliant, we decided to use the latter, hence the
266 change of the sign in the function call to GSL.
267
268 */
269
270double ellint_3(double n, double k, double phi) {
271
272 return gsl_sf_ellint_P(phi, k, -n, GSL_PREC_DOUBLE);
273
274}
275
276
277
278// [5.2.1.15] exponential integral
279// (26.x.20)
280
281double expint(double x) {
282
283 return gsl_sf_expint_Ei(x);
284
285}
286
287
288// Generalization of expint(x)
289//
290double expint_n(int n, double x) {
291
292 return gsl_sf_expint_En(n, x);
293
294}
295
296
297
298// [5.2.1.16] Hermite polynomials
299// (26.x.10)
300
301//double hermite(unsigned n, double x) {
302//}
303
304
305
306
307// [5.2.1.17] hypergeometric functions
308// (26.x.13)
309
310double hyperg(double a, double b, double c, double x) {
311
312 return gsl_sf_hyperg_2F1(a, b, c, x);
313
314}
315
316
317
318// [5.2.1.18] Laguerre polynomials
319// (26.x.11)
320
321double laguerre(unsigned n, double x) {
322 return gsl_sf_laguerre_n(n, 0, x);
323}
324
325
326
327
328// [5.2.1.19] Legendre polynomials
329// (26.x.7)
330
331double legendre(unsigned l, double x) {
332
333 return gsl_sf_legendre_Pl(l, x);
334
335}
336
337
338
339// [5.2.1.20] Riemann zeta function
340// (26.x.22)
341
342double riemann_zeta(double x) {
343
344 return gsl_sf_zeta(x);
345
346}
347
348
349
350// [5.2.1.21] spherical Bessel functions of the first kind
351// (26.x.5)
352
353double sph_bessel(unsigned n, double x) {
354
355 return gsl_sf_bessel_jl(n, x);
356
357}
358
359
360
361// [5.2.1.22] spherical associated Legendre functions
362// (26.x.9) ??????????
363
364double sph_legendre(unsigned l, unsigned m, double theta) {
365
366 return gsl_sf_legendre_sphPlm(l, m, std::cos(theta));
367
368}
369
370
371
372
373// [5.2.1.23] spherical Neumann functions
374// (26.x.6)
375
376double sph_neumann(unsigned n, double x) {
377
378 return gsl_sf_bessel_yl(n, x);
379
380}
381
382// Airy function Ai
383
384double airy_Ai(double x) {
385
386 return gsl_sf_airy_Ai(x, GSL_PREC_DOUBLE);
387
388}
389
390// Airy function Bi
391
392double airy_Bi(double x) {
393
394 return gsl_sf_airy_Bi(x, GSL_PREC_DOUBLE);
395
396}
397
398// Derivative of the Airy function Ai
399
400double airy_Ai_deriv(double x) {
401
402 return gsl_sf_airy_Ai_deriv(x, GSL_PREC_DOUBLE);
403
404}
405
406// Derivative of the Airy function Bi
407
408double airy_Bi_deriv(double x) {
409
410 return gsl_sf_airy_Bi_deriv(x, GSL_PREC_DOUBLE);
411
412}
413
414// s-th zero of the Airy function Ai
415
416double airy_zero_Ai(unsigned int s) {
417
418 return gsl_sf_airy_zero_Ai(s);
419
420}
421
422// s-th zero of the Airy function Bi
423
424double airy_zero_Bi(unsigned int s) {
425
426 return gsl_sf_airy_zero_Bi(s);
427
428}
429
430// s-th zero of the derivative of the Airy function Ai
431
432double airy_zero_Ai_deriv(unsigned int s) {
433
434 return gsl_sf_airy_zero_Ai_deriv(s);
435
436}
437
438// s-th zero of the derivative of the Airy function Bi
439
440double airy_zero_Bi_deriv(unsigned int s) {
441
442 return gsl_sf_airy_zero_Bi_deriv(s);
443
444}
445
446// wigner coefficient
447
448double wigner_3j(int ja, int jb, int jc, int ma, int mb, int mc) {
449 return gsl_sf_coupling_3j(ja,jb,jc,ma,mb,mc);
450}
451
452double wigner_6j(int ja, int jb, int jc, int jd, int je, int jf) {
453 return gsl_sf_coupling_6j(ja,jb,jc,jd,je,jf);
454}
455
456double wigner_9j(int ja, int jb, int jc, int jd, int je, int jf, int jg, int jh, int ji) {
457 return gsl_sf_coupling_9j(ja,jb,jc,jd,je,jf,jg,jh,ji);
458}
459
460} // namespace Math
461} // namespace ROOT
#define b(i)
Definition: RSha256.hxx:100
#define c(i)
Definition: RSha256.hxx:101
#define PI
double cos(double)
double airy_Bi(double x)
Calculates the Airy function Bi.
double legendre(unsigned l, double x)
Calculates the Legendre polynomials.
double expint(double x)
Calculates the exponential integral.
double riemann_zeta(double x)
Calculates the Riemann zeta function.
double ellint_1(double k, double phi)
Calculates the incomplete elliptic integral of the first kind.
double cyl_neumann(double nu, double x)
Calculates the (cylindrical) Bessel functions of the second kind (also called irregular (cylindrical)...
double sph_legendre(unsigned l, unsigned m, double theta)
Computes the spherical (normalized) associated Legendre polynomials, or spherical harmonic without az...
double wigner_3j(int two_ja, int two_jb, int two_jc, int two_ma, int two_mb, int two_mc)
Calculates the Wigner 3j coupling coefficients.
double comp_ellint_1(double k)
Calculates the complete elliptic integral of the first kind.
double comp_ellint_3(double n, double k)
Calculates the complete elliptic integral of the third kind.
double expint_n(int n, double x)
double conf_hypergU(double a, double b, double z)
Calculates the confluent hypergeometric functions of the second kind, known also as Kummer function o...
double airy_Ai_deriv(double x)
Calculates the derivative of the Airy function Ai.
double wigner_9j(int two_ja, int two_jb, int two_jc, int two_jd, int two_je, int two_jf, int two_jg, int two_jh, int two_ji)
Calculates the Wigner 9j coupling coefficients.
double assoc_laguerre(unsigned n, double m, double x)
Computes the generalized Laguerre polynomials for .
double ellint_3(double n, double k, double phi)
Calculates the complete elliptic integral of the third kind.
double airy_Ai(double x)
Calculates the Airy function Ai.
double airy_zero_Bi_deriv(unsigned int s)
Calculates the zeroes of the derivative of the Airy function Bi.
double conf_hyperg(double a, double b, double z)
Calculates the confluent hypergeometric functions of the first kind.
double hyperg(double a, double b, double c, double x)
Calculates Gauss' hypergeometric function.
double airy_zero_Ai_deriv(unsigned int s)
Calculates the zeroes of the derivative of the Airy function Ai.
double sph_neumann(unsigned n, double x)
Calculates the spherical Bessel functions of the second kind (also called irregular spherical Bessel ...
double airy_zero_Bi(unsigned int s)
Calculates the zeroes of the Airy function Bi.
double laguerre(unsigned n, double x)
Calculates the Laguerre polynomials.
double sph_bessel(unsigned n, double x)
Calculates the spherical Bessel functions of the first kind (also called regular spherical Bessel fun...
double wigner_6j(int two_ja, int two_jb, int two_jc, int two_jd, int two_je, int two_jf)
Calculates the Wigner 6j coupling coefficients.
double comp_ellint_2(double k)
Calculates the complete elliptic integral of the second kind.
double cyl_bessel_k(double nu, double x)
Calculates the modified Bessel functions of the second kind (also called irregular modified (cylindri...
double airy_Bi_deriv(double x)
Calculates the derivative of the Airy function Bi.
double cyl_bessel_i(double nu, double x)
Calculates the modified Bessel function of the first kind (also called regular modified (cylindrical)...
double cyl_bessel_j(double nu, double x)
Calculates the (cylindrical) Bessel functions of the first kind (also called regular (cylindrical) Be...
double airy_zero_Ai(unsigned int s)
Calculates the zeroes of the Airy function Ai.
double ellint_2(double k, double phi)
Calculates the complete elliptic integral of the second kind.
double assoc_legendre(unsigned l, unsigned m, double x)
Computes the associated Legendre polynomials.
Double_t x[n]
Definition: legend1.C:17
const Int_t n
Definition: legend1.C:16
Namespace for new Math classes and functions.
Namespace for new ROOT classes and functions.
Definition: StringConv.hxx:21
static constexpr double s
auto * m
Definition: textangle.C:8
auto * l
Definition: textangle.C:4
auto * a
Definition: textangle.C:12