Logo ROOT   6.18/05
Reference Guide
TLinearMinimizer.cxx
Go to the documentation of this file.
1// @(#)root/minuit:$Id$
2// Author: L. Moneta Wed Oct 25 16:28:55 2006
3
4/**********************************************************************
5 * *
6 * Copyright (c) 2006 LCG ROOT Math Team, CERN/PH-SFT *
7 * *
8 * *
9 **********************************************************************/
10
11// Implementation file for class TLinearMinimizer
12
13#include "TLinearMinimizer.h"
14#include "Math/IParamFunction.h"
15#include "TF1.h"
16#include "TUUID.h"
17#include "TROOT.h"
18#include "Fit/BasicFCN.h"
19#include "Fit/BinData.h"
20#include "Fit/Chi2FCN.h"
21
22#include "TLinearFitter.h"
23#include "TVirtualMutex.h"
24
25#include <iostream>
26#include <cassert>
27#include <algorithm>
28#include <functional>
29
30
31
32// namespace ROOT {
33
34// namespace Fit {
35
36
37// structure used for creating the TF1 representing the basis functions
38// they are the derivatives w.r.t the parameters of the model function
39template<class Func>
40struct BasisFunction {
41 BasisFunction(const Func & f, int k) :
42 fKPar(k),
43 fFunc(&f)
44 {}
45
46 double operator() ( double * x, double *) {
47 return fFunc->ParameterDerivative(x,fKPar);
48 }
49
50 unsigned int fKPar; // param component
51 const Func * fFunc;
52};
53
54
55//______________________________________________________________________________
56//
57// TLinearMinimizer, simple class implementing the ROOT::Math::Minimizer interface using
58// TLinearFitter.
59// This class uses TLinearFitter to find directly (by solving a system of linear equations)
60// the minimum of a
61// least-square function which has a linear dependence in the fit parameters.
62// This class is not used directly, but via the ROOT::Fitter class, when calling the
63// LinearFit method. It is instantiates using the plug-in manager (plug-in name is "Linear")
64//
65//__________________________________________________________________________________________
66
67
69
70
72 fRobust(false),
73 fDim(0),
74 fNFree(0),
75 fMinVal(0),
76 fObjFunc(0),
77 fFitter(0)
78{
79 // Default constructor implementation.
80 // type is not used - needed for consistency with other minimizer plug-ins
81}
82
84 fRobust(false),
85 fDim(0),
86 fNFree(0),
87 fMinVal(0),
88 fObjFunc(0),
89 fFitter(0)
90{
91 // constructor passing a type of algorithm, (supported now robust via LTS regression)
92
93 // select type from the string
94 std::string algoname(type);
95 std::transform(algoname.begin(), algoname.end(), algoname.begin(), (int(*)(int)) tolower );
96
97 if (algoname.find("robust") != std::string::npos) fRobust = true;
98
99}
100
102{
103 // Destructor implementation.
104 if (fFitter) delete fFitter;
105}
106
108 Minimizer()
109{
110 // Implementation of copy constructor.
111}
112
114{
115 // Implementation of assignment operator.
116 if (this == &rhs) return *this; // time saving self-test
117 return *this;
118}
119
120
122 // Set function to be minimized. Flag an error since only support Gradient objective functions
123
124 Error("TLinearMinimizer::SetFunction(IMultiGenFunction)","Wrong type of function used for Linear fitter");
125}
126
127
129 // Set the function to be minimized. The function must be a Chi2 gradient function
130 // When performing a linear fit we need the basis functions, which are the partial derivatives with respect to the parameters of the model function.
131
133 const Chi2Func * chi2func = dynamic_cast<const Chi2Func *>(&objfunc);
134 if (chi2func ==0) {
135 Error("TLinearMinimizer::SetFunction(IMultiGradFunction)","Wrong type of function used for Linear fitter");
136 return;
137 }
138 fObjFunc = chi2func;
139
140 // need to get the gradient parametric model function
141 typedef ROOT::Math::IParamMultiGradFunction ModelFunc;
142 const ModelFunc * modfunc = dynamic_cast<const ModelFunc*>( &(chi2func->ModelFunction()) );
143 assert(modfunc != 0);
144
145 fDim = chi2func->NDim(); // number of parameters
146 fNFree = fDim;
147 // get the basis functions (derivatives of the modelfunc)
148 TObjArray flist(fDim);
149 flist.SetOwner(kFALSE); // we do not want to own the list - it will be owned by the TLinearFitter class
150 for (unsigned int i = 0; i < fDim; ++i) {
151 // t.b.f: should not create TF1 classes
152 // when creating TF1 (if onother function with same name exists it is
153 // deleted since it is added in function list in gROOT
154 // fix the problem using meaniful names (difficult to re-produce)
155 BasisFunction<ModelFunc > bf(*modfunc,i);
156 TUUID u;
157 std::string fname = "_LinearMinimimizer_BasisFunction_" +
158 std::string(u.AsString() );
159 TF1 * f = new TF1(fname.c_str(),ROOT::Math::ParamFunctor(bf),0,1,0,1,TF1::EAddToList::kNo);
160 flist.Add(f);
161 }
162
163 // create TLinearFitter (do it now because olny now now the coordinate dimensions)
164 if (fFitter) delete fFitter; // reset by deleting previous copy
165 fFitter = new TLinearFitter( static_cast<const ModelFunc::BaseFunc&>(*modfunc).NDim() );
166
167 fFitter->StoreData(fRobust); // need a copy of data in case of robust fitting
168
169 fFitter->SetBasisFunctions(&flist);
170
171 // get the fitter data
172 const ROOT::Fit::BinData & data = chi2func->Data();
173 // add the data but not store them
174 for (unsigned int i = 0; i < data.Size(); ++i) {
175 double y = 0;
176 const double * x = data.GetPoint(i,y);
177 double ey = 1;
178 if (! data.Opt().fErrors1) {
179 ey = data.Error(i);
180 }
181 // interface should take a double *
182 fFitter->AddPoint( const_cast<double *>(x) , y, ey);
183 }
184
185}
186
187bool TLinearMinimizer::SetFixedVariable(unsigned int ivar, const std::string & /* name */ , double val) {
188 // set a fixed variable.
189 if (!fFitter) return false;
190 fFitter->FixParameter(ivar, val);
191 return true;
192}
193
195 // find directly the minimum of the chi2 function
196 // solving the linear equation. Use TVirtualFitter::Eval.
197
198 if (fFitter == 0 || fObjFunc == 0) return false;
199
200 int iret = 0;
201 if (!fRobust)
202 iret = fFitter->Eval();
203 else {
204 // robust fitting - get h parameter using tolerance (t.b. improved)
205 double h = Tolerance();
206 if (PrintLevel() > 0)
207 std::cout << "TLinearMinimizer: Robust fitting with h = " << h << std::endl;
208 iret = fFitter->EvalRobust(h);
209 }
210 fStatus = iret;
211
212 if (iret != 0) {
213 Warning("Minimize","TLinearFitter failed in finding the solution");
214 return false;
215 }
216
217
218 // get parameter values
219 fParams.resize( fDim);
220 // no error available for robust fitting
221 if (!fRobust) fErrors.resize( fDim);
222 for (unsigned int i = 0; i < fDim; ++i) {
223 fParams[i] = fFitter->GetParameter( i);
224 if (!fRobust) fErrors[i] = fFitter->GetParError( i );
225 }
226 fCovar.resize(fDim*fDim);
227 double * cov = fFitter->GetCovarianceMatrix();
228
229 if (!fRobust && cov) std::copy(cov,cov+fDim*fDim,fCovar.begin() );
230
231 // calculate chi2 value
232
233 fMinVal = (*fObjFunc)(&fParams.front());
234
235 return true;
236
237}
238
239
240// } // end namespace Fit
241
242// } // end namespace ROOT
243
#define f(i)
Definition: RSha256.hxx:104
#define h(i)
Definition: RSha256.hxx:106
const Bool_t kFALSE
Definition: RtypesCore.h:88
#define ClassImp(name)
Definition: Rtypes.h:365
void Error(const char *location, const char *msgfmt,...)
void Warning(const char *location, const char *msgfmt,...)
int type
Definition: TGX11.cxx:120
TRObject operator()(const T1 &t1) const
Class describing the binned data sets : vectors of x coordinates, y values and optionally error on y ...
Definition: BinData.h:53
const double * GetPoint(unsigned int ipoint, double &value) const
retrieve at the same time a pointer to the coordinate data and the fit value More efficient than call...
Definition: BinData.h:370
double Error(unsigned int ipoint) const
Definition: BinData.h:251
Chi2FCN class for binnned fits using the least square methods.
Definition: Chi2FCN.h:49
unsigned int Size() const
return number of fit points
Definition: FitData.h:303
const DataOptions & Opt() const
access to options
Definition: FitData.h:319
Documentation for the abstract class IBaseFunctionMultiDim.
Definition: IFunction.h:62
Interface (abstract class) for multi-dimensional functions providing a gradient calculation.
Definition: IFunction.h:327
Interface (abstract class) for parametric gradient multi-dimensional functions providing in addition ...
double Tolerance() const
absolute tolerance
Definition: Minimizer.h:420
int PrintLevel() const
minimizer configuration parameters
Definition: Minimizer.h:411
Param Functor class for Multidimensional functions.
Definition: ParamFunctor.h:274
virtual void SetOwner(Bool_t enable=kTRUE)
Set whether this collection is the owner (enable==true) of its content.
1-Dim function class
Definition: TF1.h:211
The Linear Fitter - For fitting functions that are LINEAR IN PARAMETERS.
virtual Double_t * GetCovarianceMatrix() const
Returns covariance matrix.
virtual Double_t GetParError(Int_t ipar) const
Returns the error of parameter #ipar.
virtual Int_t Eval()
Perform the fit and evaluate the parameters Returns 0 if the fit is ok, 1 if there are errors.
virtual Double_t GetParameter(Int_t ipar) const
virtual void SetBasisFunctions(TObjArray *functions)
set the basis functions in case the fitting function is not set directly The TLinearFitter will manag...
virtual void FixParameter(Int_t ipar)
Fixes paramter #ipar at its current value.
virtual Int_t EvalRobust(Double_t h=-1)
Finds the parameters of the fitted function in case data contains outliers.
virtual void AddPoint(Double_t *x, Double_t y, Double_t e=1)
Adds 1 point to the fitter.
virtual void StoreData(Bool_t store)
TLinearMinimizer class: minimizer implementation based on TMinuit.
virtual ~TLinearMinimizer()
Destructor (no operations)
virtual bool SetFixedVariable(unsigned int, const std::string &, double)
set fixed variable (override if minimizer supports them )
unsigned int fNFree
virtual void SetFunction(const ROOT::Math::IMultiGenFunction &func)
set the fit model function
TLinearMinimizer & operator=(const TLinearMinimizer &rhs)
Assignment operator.
TLinearFitter * fFitter
bool fRobust
return reference to the objective function virtual const ROOT::Math::IGenFunction & Function() const;
virtual bool Minimize()
method to perform the minimization
const ROOT::Math::IMultiGradFunction * fObjFunc
std::vector< double > fParams
TLinearMinimizer(int type=0)
Default constructor.
std::vector< double > fCovar
std::vector< double > fErrors
An array of TObjects.
Definition: TObjArray.h:37
void Add(TObject *obj)
Definition: TObjArray.h:74
This class defines a UUID (Universally Unique IDentifier), also known as GUIDs (Globally Unique IDent...
Definition: TUUID.h:42
const char * AsString() const
Return UUID as string. Copy string immediately since it will be reused.
Definition: TUUID.cxx:560
Double_t y[n]
Definition: legend1.C:17
Double_t x[n]
Definition: legend1.C:17
Double_t ey[n]
Definition: legend1.C:17
RooCmdArg Minimizer(const char *type, const char *alg=0)