template<typename Architecture_t>
class TMVA::DNN::RNN::TBasicRNNLayer< Architecture_t >
Definition at line 55 of file RNNLayer.h.
|
| | TBasicRNNLayer (const TBasicRNNLayer &) |
| | Copy Constructor. More...
|
| |
| | TBasicRNNLayer (size_t batchSize, size_t stateSize, size_t inputSize, size_t timeSteps, bool rememberState=false, DNN::EActivationFunction f=DNN::EActivationFunction::kTanh, bool training=true, DNN::EInitialization fA=DNN::EInitialization::kZero) |
| | Constructor. More...
|
| |
| virtual void | AddWeightsXMLTo (void *parent) |
| | Writes the information and the weights about the layer in an XML node. More...
|
| |
| void | Backward (Tensor_t &gradients_backward, const Tensor_t &activations_backward, std::vector< Matrix_t > &inp1, std::vector< Matrix_t > &inp2) |
| | Backpropagates the error. More...
|
| |
| Matrix_t & | CellBackward (Matrix_t &state_gradients_backward, const Matrix_t &precStateActivations, const Matrix_t &input, Matrix_t &input_gradient, Matrix_t &dF) |
| | Backward for a single time unit a the corresponding call to Forward(...). More...
|
| |
| void | CellForward (const Matrix_t &input, Matrix_t &dF) |
| | Forward for a single cell (time unit) More...
|
| |
| void | Forward (Tensor_t &input, bool isTraining=true) |
| | Compute and return the next state with given input matrix. More...
|
| |
| DNN::EActivationFunction | GetActivationFunction () const |
| |
| Matrix_t & | GetBiasesState () |
| |
| const Matrix_t & | GetBiasesState () const |
| |
| Matrix_t & | GetBiasStateGradients () |
| |
| const Matrix_t & | GetBiasStateGradients () const |
| |
| std::vector< Matrix_t > & | GetDerivatives () |
| |
| const std::vector< Matrix_t > & | GetDerivatives () const |
| |
| Matrix_t & | GetDerivativesAt (size_t i) |
| |
| const Matrix_t & | GetDerivativesAt (size_t i) const |
| |
| size_t | GetInputSize () const |
| |
| Matrix_t & | GetState () |
| |
| const Matrix_t & | GetState () const |
| |
| size_t | GetStateSize () const |
| |
| size_t | GetTimeSteps () const |
| | Getters. More...
|
| |
| Matrix_t & | GetWeightInputGradients () |
| |
| const Matrix_t & | GetWeightInputGradients () const |
| |
| Matrix_t & | GetWeightsInput () |
| |
| const Matrix_t & | GetWeightsInput () const |
| |
| Matrix_t & | GetWeightsState () |
| |
| const Matrix_t & | GetWeightsState () const |
| |
| Matrix_t & | GetWeightStateGradients () |
| |
| const Matrix_t & | GetWeightStateGradients () const |
| |
| void | InitState (DNN::EInitialization m=DNN::EInitialization::kZero) |
| | Initialize the weights according to the given initialization method. More...
|
| |
| bool | IsRememberState () const |
| |
| void | Print () const |
| | Prints the info about the layer. More...
|
| |
| virtual void | ReadWeightsFromXML (void *parent) |
| | Read the information and the weights about the layer from XML node. More...
|
| |
| void | Update (const Scalar_t learningRate) |
| |
| | VGeneralLayer (const VGeneralLayer &) |
| | Copy Constructor. More...
|
| |
| | VGeneralLayer (size_t BatchSize, size_t InputDepth, size_t InputHeight, size_t InputWidth, size_t Depth, size_t Height, size_t Width, size_t WeightsNSlices, size_t WeightsNRows, size_t WeightsNCols, size_t BiasesNSlices, size_t BiasesNRows, size_t BiasesNCols, size_t OutputNSlices, size_t OutputNRows, size_t OutputNCols, EInitialization Init) |
| | Constructor. More...
|
| |
| | VGeneralLayer (size_t BatchSize, size_t InputDepth, size_t InputHeight, size_t InputWidth, size_t Depth, size_t Height, size_t Width, size_t WeightsNSlices, std::vector< size_t > WeightsNRows, std::vector< size_t > WeightsNCols, size_t BiasesNSlices, std::vector< size_t > BiasesNRows, std::vector< size_t > BiasesNCols, size_t OutputNSlices, size_t OutputNRows, size_t OutputNCols, EInitialization Init) |
| | General Constructor with different weights dimension. More...
|
| |
| | VGeneralLayer (VGeneralLayer< Architecture_t > *layer) |
| | Copy the layer provided as a pointer. More...
|
| |
| virtual | ~VGeneralLayer () |
| | Virtual Destructor. More...
|
| |
| virtual void | AddWeightsXMLTo (void *parent)=0 |
| | Writes the information and the weights about the layer in an XML node. More...
|
| |
| virtual void | Backward (std::vector< Matrix_t > &gradients_backward, const std::vector< Matrix_t > &activations_backward, std::vector< Matrix_t > &inp1, std::vector< Matrix_t > &inp2)=0 |
| | Backpropagates the error. More...
|
| |
| void | CopyBiases (const std::vector< Matrix_t > &otherBiases) |
| | Copies the biases provided as an input. More...
|
| |
| void | CopyWeights (const std::vector< Matrix_t > &otherWeights) |
| | Copies the weights provided as an input. More...
|
| |
| virtual void | Forward (std::vector< Matrix_t > &input, bool applyDropout=false)=0 |
| | Computes activation of the layer for the given input. More...
|
| |
| std::vector< Matrix_t > & | GetActivationGradients () |
| |
| const std::vector< Matrix_t > & | GetActivationGradients () const |
| |
| Matrix_t & | GetActivationGradientsAt (size_t i) |
| |
| const Matrix_t & | GetActivationGradientsAt (size_t i) const |
| |
| size_t | GetBatchSize () const |
| | Getters. More...
|
| |
| std::vector< Matrix_t > & | GetBiases () |
| |
| const std::vector< Matrix_t > & | GetBiases () const |
| |
| Matrix_t & | GetBiasesAt (size_t i) |
| |
| const Matrix_t & | GetBiasesAt (size_t i) const |
| |
| std::vector< Matrix_t > & | GetBiasGradients () |
| |
| const std::vector< Matrix_t > & | GetBiasGradients () const |
| |
| Matrix_t & | GetBiasGradientsAt (size_t i) |
| |
| const Matrix_t & | GetBiasGradientsAt (size_t i) const |
| |
| size_t | GetDepth () const |
| |
| size_t | GetHeight () const |
| |
| EInitialization | GetInitialization () const |
| |
| size_t | GetInputDepth () const |
| |
| size_t | GetInputHeight () const |
| |
| size_t | GetInputWidth () const |
| |
| std::vector< Matrix_t > & | GetOutput () |
| |
| const std::vector< Matrix_t > & | GetOutput () const |
| |
| Matrix_t & | GetOutputAt (size_t i) |
| |
| const Matrix_t & | GetOutputAt (size_t i) const |
| |
| std::vector< Matrix_t > & | GetWeightGradients () |
| |
| const std::vector< Matrix_t > & | GetWeightGradients () const |
| |
| Matrix_t & | GetWeightGradientsAt (size_t i) |
| |
| const Matrix_t & | GetWeightGradientsAt (size_t i) const |
| |
| std::vector< Matrix_t > & | GetWeights () |
| |
| const std::vector< Matrix_t > & | GetWeights () const |
| |
| Matrix_t & | GetWeightsAt (size_t i) |
| |
| const Matrix_t & | GetWeightsAt (size_t i) const |
| |
| size_t | GetWidth () const |
| |
| void | Initialize () |
| | Initialize the weights and biases according to the given initialization method. More...
|
| |
| bool | IsTraining () const |
| |
| virtual void | Print () const =0 |
| | Prints the info about the layer. More...
|
| |
| void | ReadMatrixXML (void *node, const char *name, Matrix_t &matrix) |
| |
| virtual void | ReadWeightsFromXML (void *parent)=0 |
| | Read the information and the weights about the layer from XML node. More...
|
| |
| void | SetBatchSize (size_t batchSize) |
| | Setters. More...
|
| |
| void | SetDepth (size_t depth) |
| |
| virtual void | SetDropoutProbability (Scalar_t) |
| | Set Dropout probability. More...
|
| |
| void | SetHeight (size_t height) |
| |
| void | SetInputDepth (size_t inputDepth) |
| |
| void | SetInputHeight (size_t inputHeight) |
| |
| void | SetInputWidth (size_t inputWidth) |
| |
| void | SetIsTraining (bool isTraining) |
| |
| void | SetWidth (size_t width) |
| |
| void | Update (const Scalar_t learningRate) |
| | Updates the weights and biases, given the learning rate. More...
|
| |
| void | UpdateBiases (const std::vector< Matrix_t > &biasGradients, const Scalar_t learningRate) |
| | Updates the biases, given the gradients and the learning rate. More...
|
| |
| void | UpdateBiasGradients (const std::vector< Matrix_t > &biasGradients, const Scalar_t learningRate) |
| | Updates the bias gradients, given some other weight gradients and learning rate. More...
|
| |
| void | UpdateWeightGradients (const std::vector< Matrix_t > &weightGradients, const Scalar_t learningRate) |
| | Updates the weight gradients, given some other weight gradients and learning rate. More...
|
| |
| void | UpdateWeights (const std::vector< Matrix_t > &weightGradients, const Scalar_t learningRate) |
| | Updates the weights, given the gradients and the learning rate,. More...
|
| |
| void | WriteMatrixToXML (void *node, const char *name, const Matrix_t &matrix) |
| |
| void | WriteTensorToXML (void *node, const char *name, const std::vector< Matrix_t > &tensor) |
| | helper functions for XML More...
|
| |