|
ROOT 6.18/05 Reference Guide |
Adagrad Optimizer class.
This class represents the Adagrad Optimizer.
Public Types | |
| using | Matrix_t = typename Architecture_t::Matrix_t |
| using | Scalar_t = typename Architecture_t::Scalar_t |
Public Types inherited from TMVA::DNN::VOptimizer< Architecture_t, VGeneralLayer< Architecture_t >, TDeepNet< Architecture_t, VGeneralLayer< Architecture_t > > > | |
| using | Matrix_t = typename Architecture_t::Matrix_t |
| using | Scalar_t = typename Architecture_t::Scalar_t |
Public Member Functions | |
| TAdagrad (DeepNet_t &deepNet, Scalar_t learningRate=0.01, Scalar_t epsilon=1e-8) | |
| Constructor. More... | |
| ~TAdagrad ()=default | |
| Destructor. More... | |
| Scalar_t | GetEpsilon () const |
| Getters. More... | |
| std::vector< std::vector< Matrix_t > > & | GetPastSquaredBiasGradients () |
| std::vector< Matrix_t > & | GetPastSquaredBiasGradientsAt (size_t i) |
| std::vector< std::vector< Matrix_t > > & | GetPastSquaredWeightGradients () |
| std::vector< Matrix_t > & | GetPastSquaredWeightGradientsAt (size_t i) |
Public Member Functions inherited from TMVA::DNN::VOptimizer< Architecture_t, VGeneralLayer< Architecture_t >, TDeepNet< Architecture_t, VGeneralLayer< Architecture_t > > > | |
| VOptimizer (Scalar_t learningRate, TDeepNet< Architecture_t, VGeneralLayer< Architecture_t > > &deepNet) | |
| Constructor. More... | |
| virtual | ~VOptimizer ()=default |
| Virtual Destructor. More... | |
| size_t | GetGlobalStep () const |
| VGeneralLayer< Architecture_t > * | GetLayerAt (size_t i) |
| std::vector< VGeneralLayer< Architecture_t > * > & | GetLayers () |
| Scalar_t | GetLearningRate () const |
| Getters. More... | |
| void | IncrementGlobalStep () |
| Increments the global step. More... | |
| void | SetLearningRate (size_t learningRate) |
| Setters. More... | |
| void | Step () |
| Performs one step of optimization. More... | |
Protected Member Functions | |
| void | UpdateBiases (size_t layerIndex, std::vector< Matrix_t > &biases, const std::vector< Matrix_t > &biasGradients) |
| Update the biases, given the current bias gradients. More... | |
| void | UpdateWeights (size_t layerIndex, std::vector< Matrix_t > &weights, const std::vector< Matrix_t > &weightGradients) |
| Update the weights, given the current weight gradients. More... | |
| virtual void | UpdateBiases (size_t layerIndex, std::vector< Matrix_t > &biases, const std::vector< Matrix_t > &biasGradients)=0 |
| Update the biases, given the current bias gradients. More... | |
| virtual void | UpdateWeights (size_t layerIndex, std::vector< Matrix_t > &weights, const std::vector< Matrix_t > &weightGradients)=0 |
| Update the weights, given the current weight gradients. More... | |
Protected Attributes | |
| Scalar_t | fEpsilon |
| The Smoothing term used to avoid division by zero. More... | |
| std::vector< std::vector< Matrix_t > > | fPastSquaredBiasGradients |
| The sum of the square of the past bias gradients associated with the deep net. More... | |
| std::vector< std::vector< Matrix_t > > | fPastSquaredWeightGradients |
| The sum of the square of the past weight gradients associated with the deep net. More... | |
Protected Attributes inherited from TMVA::DNN::VOptimizer< Architecture_t, VGeneralLayer< Architecture_t >, TDeepNet< Architecture_t, VGeneralLayer< Architecture_t > > > | |
| TDeepNet< Architecture_t, VGeneralLayer< Architecture_t > > & | fDeepNet |
| The reference to the deep net. More... | |
| size_t | fGlobalStep |
| The current global step count during training. More... | |
| Scalar_t | fLearningRate |
| The learning rate used for training. More... | |
#include <TMVA/DNN/Adagrad.h>
| using TMVA::DNN::TAdagrad< Architecture_t, Layer_t, DeepNet_t >::Matrix_t = typename Architecture_t::Matrix_t |
| using TMVA::DNN::TAdagrad< Architecture_t, Layer_t, DeepNet_t >::Scalar_t = typename Architecture_t::Scalar_t |
| TMVA::DNN::TAdagrad< Architecture_t, Layer_t, DeepNet_t >::TAdagrad | ( | DeepNet_t & | deepNet, |
| Scalar_t | learningRate = 0.01, |
||
| Scalar_t | epsilon = 1e-8 |
||
| ) |
|
default |
Destructor.
|
inline |
|
inline |
|
inline |
|
inline |
|
inline |
|
protectedvirtual |
Update the biases, given the current bias gradients.
|
protectedvirtual |
Update the weights, given the current weight gradients.
|
protected |
|
protected |
|
protected |