26#ifndef ROOT_TMVA_MethodRuleFit 
   27#define ROOT_TMVA_MethodRuleFit 
  220   if (var>vmax) 
return  1;
 
  221   if (var<vmin) 
return -1;
 
  242      mlog << kWARNING << 
"Option <" << varstr << 
"> " << (dir==1 ? 
"above":
"below") << 
" allowed range. Reset to new value = " << var << 
Endl;
 
  260      mlog << kWARNING << 
"Option <" << varstr << 
"> " << (dir==1 ? 
"above":
"below") << 
" allowed range. Reset to default value = " << var << 
Endl;
 
#define ClassDef(name, id)
 
Describe directory structure in memory.
 
Class that contains all the data information.
 
Virtual base Class for all MVA method.
 
TDirectory * BaseDir() const
returns the ROOT directory where info/histograms etc of the corresponding MVA method instance are sto...
 
virtual void ReadWeightsFromStream(std::istream &)=0
 
J Friedman's RuleFit method.
 
Double_t GetLinQuantile() const
 
RuleFit * GetRuleFitPtr()
 
const std::vector< TMVA::Event * > & GetTrainingEvents() const
 
Double_t GetMvaValue(Double_t *err=0, Double_t *errUpper=0)
returns MVA value for given event
 
Int_t GetRFNendnodes() const
 
Double_t GetMinFracNEve() const
 
Double_t GetGDPathEveFrac() const
 
void MakeClassSpecific(std::ostream &, const TString &) const
write specific classifier response
 
TMVA::DecisionTree::EPruneMethod fPruneMethod
 
std::vector< DecisionTree * > fForest
 
Double_t GetGDErrScale() const
 
Double_t GetGDValidEveFrac() const
 
Int_t GetRFNrules() const
 
const TString GetRFWorkDir() const
 
void MakeClassLinear(std::ostream &) const
print out the linear terms
 
void GetHelpMessage() const
get help message text
 
std::vector< TMVA::Event * > fEventSample
 
void TrainJFRuleFit()
training of rules using Jerome Friedmans implementation
 
Double_t GetPruneStrength() const
 
virtual Bool_t HasAnalysisType(Types::EAnalysisType type, UInt_t numberClasses, UInt_t)
RuleFit can handle classification with 2 classes.
 
void ProcessOptions()
process the options specified by the user
 
const SeparationBase * GetSeparationBaseConst() const
 
TMVA::DecisionTree::EPruneMethod GetPruneMethod() const
 
void ReadWeightsFromStream(std::istream &istr)
read rules from an std::istream
 
void AddWeightsXMLTo(void *parent) const
add the rules to XML node
 
void InitEventSample(void)
write all Events from the Tree into a vector of Events, that are more easily manipulated.
 
void MakeClassRuleCuts(std::ostream &) const
print out the rule cuts
 
TDirectory * GetMethodBaseDir() const
 
const std::vector< TMVA::DecisionTree * > & GetForest() const
 
void InitMonitorNtuple()
initialize the monitoring ntuple
 
virtual ~MethodRuleFit(void)
destructor
 
void Init(void)
default initialization
 
Double_t GetGDPathStep() const
 
void WriteMonitoringHistosToFile(void) const
write special monitoring histograms to file (here ntuple)
 
Double_t GetTreeEveFrac() const
 
MethodRuleFit(const TString &jobName, const TString &methodTitle, DataSetInfo &theData, const TString &theOption="")
standard constructor
 
void ReadWeightsFromXML(void *wghtnode)
read rules from XML node
 
SeparationBase * fSepType
 
const RuleFit * GetRuleFitConstPtr() const
 
void DeclareOptions()
define the options (their key words) that can be set in the option string know options.
 
Double_t GetMaxFracNEve() const
 
Bool_t VerifyRange(MsgLogger &mlog, const char *varstr, T &var, const T &vmin, const T &vmax)
 
SeparationBase * GetSeparationBase() const
 
Int_t GetGDNPathSteps() const
 
const Ranking * CreateRanking()
computes ranking of input variables
 
void TrainTMVARuleFit()
training of rules using TMVA implementation
 
ostringstream derivative to redirect and format output
 
Ranking for variables in method (implementation)
 
A class implementing various fits of rule ensembles.
 
An interface to calculate the "SeparationGain" for different separation criteria used in various trai...
 
A TTree represents a columnar dataset.
 
create variable transformations
 
MsgLogger & Endl(MsgLogger &ml)