31#ifndef ROOT_TMVA_MethodTMlpANN
32#define ROOT_TMVA_MethodTMlpANN
56 const TString& theOption =
"3000:N-1:N-2");
#define ClassDef(name, id)
Class that contains all the data information.
Virtual base Class for all MVA method.
virtual void ReadWeightsFromStream(std::istream &)=0
This is the TMVA TMultiLayerPerceptron interface class.
void ReadWeightsFromStream(std::istream &istr)
read weights from stream since the MLP can not read from the stream, we 1st: write the weights to tem...
Double_t fValidationFraction
void Init(void)
default initialisations
virtual Bool_t HasAnalysisType(Types::EAnalysisType type, UInt_t numberClasses, UInt_t numberTargets)
TMlpANN can handle classification with 2 classes.
const Ranking * CreateRanking()
void Train(void)
performs TMlpANN training available learning methods:
Double_t GetMvaValue(Double_t *err=0, Double_t *errUpper=0)
calculate the value of the neural net for the current event
void DeclareOptions()
define the options (their key words) that can be set in the option string
TTree * fLocalTrainingTree
void CreateMLPOptions(TString)
translates options from option string into TMlpANN language
void ReadWeightsFromXML(void *wghtnode)
rebuild temporary textfile from xml weightfile and load this file into MLP
MethodTMlpANN(const TString &jobName, const TString &methodTitle, DataSetInfo &theData, const TString &theOption="3000:N-1:N-2")
standard constructor
void ProcessOptions()
builds the neural network as specified by the user
void MakeClassSpecific(std::ostream &, const TString &) const
write specific classifier response nothing to do here - all taken care of by TMultiLayerPerceptron
TMultiLayerPerceptron * fMLP
void AddWeightsXMLTo(void *parent) const
write weights to xml file
void MakeClass(const TString &classFileName=TString("")) const
create reader class for classifier -> overwrites base class function create specific class for TMulti...
virtual ~MethodTMlpANN(void)
destructor
void GetHelpMessage() const
get help message text
void SetHiddenLayer(TString hiddenlayer="")
Ranking for variables in method (implementation)
This class describes a neural network.
A TTree represents a columnar dataset.
create variable transformations