26         unsigned int size = 
y.GetNoElements();
 
   27         const double * yy = 
y.GetMatrixArray();
 
   62         std::vector<double> values(
X(), 
X()+
NDim());
 
   65         r[
"stepsizes"] = stepSizes;
 
   66         r[
"initialparams"] = values;
 
   69         bool optimxloaded = 
FALSE;
 
   70         r[
"optimxloaded"] = optimxloaded;
 
   71         r.
Execute(
"optimxloaded<-library(optimx,logical.return=TRUE)");
 
   73         int ibool = 
r.
Eval(
"optimxloaded");
 
   74         if (ibool==1) optimxloaded=
kTRUE;
 
   80         if (optimxloaded==
kTRUE) {
 
   83               cmd = 
TString::Format(
"result <- optimx( initialparams, minfunction,method='%s',control = list(ndeps=stepsizes,maxit=%d,trace=%d,abstol=%e),hessian=TRUE)",
fMethod.c_str(),
MaxIterations(),
PrintLevel(),
Tolerance());
 
   87               cmd = 
TString::Format(
"result <- optimx( initialparams, minfunction,mingradfunction, method='%s', control = list(ndeps=stepsizes,maxit=%d,trace=%d,abstol=%e),hessian=TRUE)",
fMethod.c_str(),
MaxIterations(),
PrintLevel(),
Tolerance());
 
   96               cmd = 
TString::Format(
"result <- optim( initialparams, minfunction,method='%s',control = list(ndeps=stepsizes,maxit=%d,trace=%d,abstol=%e),hessian=TRUE)",
fMethod.c_str(),
MaxIterations(),
PrintLevel(),
Tolerance());
 
  100               cmd = 
TString::Format(
"result <- optim( initialparams, minfunction,mingradfunction, method='%s', control = list(ndeps=stepsizes,maxit=%d,trace=%d,abstol=%e),hessian=TRUE)",
fMethod.c_str(),
MaxIterations(),
PrintLevel(),
Tolerance());
 
  104         std::cout << 
"Calling R with command " << cmd << std::endl;   
 
  112            r.
Execute(
"hess<-attr(result,\"details\")[,\"nhatend\"]");
 
  114            r.
Execute(
"hess<-sapply(hess,function(x) x)");
 
  116            r.
Execute(
"hess<-matrix(hess,c(ndim,ndim))");
 
  120            r.
Execute(
"errors<-sqrt(abs(diag(cov)))");
 
  128            r.
Execute(
"errors<-sqrt(abs(diag(cov)))");
 
  133         std::vector<double> vectorPar = 
r[
"par"];
 
  141         std::vector<double> err = 
r[
"errors"];
 
  155         const double *min=vectorPar.data();
 
  158         std::cout<<
"Value at minimum ="<<
MinValue()<<std::endl;
 
  165         unsigned int ndim = 
NDim();
 
  167         if (i > ndim || j > ndim) 
return 0;
 
  176         unsigned int ndim = 
NDim();
 
  178         if (i > ndim || j > ndim) 
return 0;
 
virtual double MinValue() const
return minimum function value
 
void SetMinValue(double val)
 
virtual const double * StepSizes() const
accessor methods
 
const ROOT::Math::IMultiGenFunction * ObjFunction() const
return pointer to used objective function
 
virtual unsigned int NDim() const
number of dimensions
 
virtual const double * X() const
return pointer to X values at the minimum
 
void SetFinalValues(const double *x)
 
const ROOT::Math::IMultiGradFunction * GradObjFunction() const
return pointer to used gradient object function (NULL if gradient is not supported)
 
Documentation for the abstract class IBaseFunctionMultiDim.
 
Interface (abstract class) for multi-dimensional functions providing a gradient calculation.
 
virtual void Gradient(const T *x, T *grad) const
Evaluate all the vector of function derivatives (gradient) at a point x.
 
double Tolerance() const
absolute tolerance
 
unsigned int MaxIterations() const
max iterations
 
int PrintLevel() const
minimizer configuration parameters
 
double HessMatrix(unsigned int i, unsigned int j) const
Returns the ith jth component of the Hessian matrix.
 
virtual unsigned int NCalls() const
Returns the number of function calls.
 
virtual double CovMatrix(unsigned int ivar, unsigned int jvar) const
return covariance matrices element for variables ivar,jvar if the variable is fixed the return value ...
 
TMatrixD fCovMatrix
covariant matrix
 
std::vector< double > fErrors
vector of parameter errors
 
std::string fMethod
minimizer method to be used, must be of a type listed in R optim or optimx descriptions
 
RMinimizer(Option_t *method)
Default constructor.
 
TMatrixD fHessMatrix
Hessian matrix.
 
virtual bool Minimize()
Function to find the minimum.
 
This is a class to pass functions from ROOT to R.
 
ROOT R was implemented using the R Project library and the modules Rcpp and RInside
 
void Execute(const TString &code)
Method to eval R code.
 
static TRInterface & Instance()
static method to get an TRInterface instance reference
 
Int_t Eval(const TString &code, TRObject &ans)
Method to eval R code and you get the result in a reference to TRObject.
 
virtual TMatrixTBase< Element > & ResizeTo(Int_t nrows, Int_t ncols, Int_t=-1)
Set size of the matrix to nrows x ncols New dynamic elements are created, the overlapping part of the...
 
const char * Data() const
 
static TString Format(const char *fmt,...)
Static method which formats a string using a printf style format descriptor and return a TString.
 
Namespace for new Math classes and functions.
 
const ROOT::Math::IMultiGenFunction * gFunction
function wrapper for the function to be minimized
 
double minfunction(const std::vector< double > &x)
function to return the function values at point x
 
TVectorD mingradfunction(TVectorD y)
function to return the gradient values at point y
 
const ROOT::Math::IMultiGradFunction * gGradFunction
function wrapper for the gradient of the function to be minimized
 
int gNCalls
integer for the number of function calls
 
static constexpr double cm