70                 "KernelType:Gaussian;Iteration:Adaptive;Mirror:noMirror;Binning:RelaxedBinning", 
Double_t rho = 1.0) {
 
   71      Instantiate( 
nullptr,  events, data, 
nullptr, xMin, xMax, option, rho);
 
   75        "KernelType:Gaussian;Iteration:Adaptive;Mirror:noMirror;Binning:RelaxedBinning", 
Double_t rho = 1.0) {
 
   76      Instantiate( 
nullptr,  events, data, dataWeight, xMin, xMax, option, rho);
 
   79   template<
class KernelFunction>
 
   83   template<
class KernelFunction>
 
  196      Double_t k2_PI_ROOT_INV = 0.398942280401432703; 
 
  197      return (
x > -9. && 
x < 9.) ? k2_PI_ROOT_INV * 
std::exp(-.5 * 
x * 
x) : 0.0;
 
  200      return (
x > -1. &&  
x < 1.) ? 3. / 4. * (1. - 
x * 
x) : 0.0;
 
  204      return (
x > -1. &&  
x < 1.) ? 15. / 16. * (1. - 
x * 
x) * (1. - 
x * 
x) : 0.0;
 
  238   void GetOptions(std::string optionType, std::string option);
 
#define R(a, b, c, d, e, f, g, h, i)
 
#define ClassDef(name, id)
 
Interface (abstract class) for generic functions objects of one-dimension Provides a method to evalua...
 
Template class to wrap any C++ callable object which takes one argument i.e.
 
A TGraphErrors is a TGraph with error bars.
 
Kernel Density Estimation class.
 
TF1 * GetPDFUpperConfidenceInterval(Double_t confidenceLevel=0.95, UInt_t npx=100, Double_t xMin=1.0, Double_t xMax=0.0)
 
TF1 * GetKDEApproximateBias(UInt_t npx=100, Double_t xMin=1.0, Double_t xMax=0.0)
 
void SetData(const Double_t *data, const Double_t *weights)
 
TF1 * fLowerPDF
Output Kernel Density Estimation upper confidence interval PDF function.
 
std::vector< Double_t > fKernelSigmas2
 
Double_t ComputeKernelL2Norm() const
 
TF1 * GetPDFLowerConfidenceInterval(Double_t confidenceLevel=0.95, UInt_t npx=100, Double_t xMin=1.0, Double_t xMax=0.0)
 
void SetKernelType(EKernelType kern)
 
std::vector< Double_t > fCanonicalBandwidths
 
void SetKernelFunction(KernelFunction_Ptr kernfunc=0)
 
Double_t UpperConfidenceInterval(const Double_t *x, const Double_t *p) const
 
TF1 * GetDrawnUpperFunction()
 
Double_t ApproximateBias(const Double_t *x, const Double_t *) const
 
Double_t ComputeMidspread()
 
void DrawConfidenceInterval(TString &drawOpt, double cl=0.95)
 
TF1 * GetDrawnLowerFunction()
 
void SetUserCanonicalBandwidth()
 
void CheckKernelValidity()
 
TKDE(const Char_t *, const KernelFunction &kernfunc, UInt_t events, const Double_t *data, const Double_t *dataWeight, Double_t xMin=0.0, Double_t xMax=0.0, const Option_t *option="KernelType:UserDefined;Iteration:Adaptive;Mirror:noMirror;Binning:RelaxedBinning", Double_t rho=1.0)
 
const Double_t * GetAdaptiveWeights() const
 
Double_t fAdaptiveBandwidthFactor
 
Double_t LowerConfidenceInterval(const Double_t *x, const Double_t *p) const
 
std::vector< Double_t > fBinCount
 
Double_t GetRAMISE() const
 
void SetIteration(EIteration iter)
 
Double_t ComputeKernelIntegral() const
 
Double_t CosineArchKernel(Double_t x) const
 
Double_t operator()(Double_t x) const
 
void SetUserKernelSigma2()
 
Double_t GetBias(Double_t x) const
 
std::vector< Double_t > fData
internal kernel class. Transient because it is recreated after reading from a file
 
TGraphErrors * GetGraphWithErrors(UInt_t npx=100, Double_t xMin=1.0, Double_t xMax=0.0)
 
ROOT::Math::IBaseFunctionOneDim * KernelFunction_Ptr
 
void SetUseBinsNEvents(UInt_t nEvents)
 
std::vector< Double_t > fEvents
 
Double_t GetError(Double_t x) const
 
TF1 * GetKDEFunction(UInt_t npx=100, Double_t xMin=1.0, Double_t xMax=0.0)
 
void SetBinning(EBinning)
 
void GetOptions(std::string optionType, std::string option)
 
Double_t GetValue(Double_t x) const
 
std::vector< Bool_t > fSettedOptions
 
Double_t GaussianKernel(Double_t x) const
 
void SetRange(Double_t xMin, Double_t xMax)
 
virtual void Draw(const Option_t *option="")
 
Double_t ComputeKernelSigma2() const
 
void SetOptions(const Option_t *option, Double_t rho)
 
Double_t GetFixedWeight() const
 
TF1 * GetFunction(UInt_t npx=100, Double_t xMin=1.0, Double_t xMax=0.0)
 
TF1 * GetUpperFunction(Double_t confidenceLevel=0.95, UInt_t npx=100, Double_t xMin=1.0, Double_t xMax=0.0)
 
void Instantiate(KernelFunction_Ptr kernfunc, UInt_t events, const Double_t *data, const Double_t *weight, Double_t xMin, Double_t xMax, const Option_t *option, Double_t rho)
 
void SetDrawOptions(const Option_t *option, TString &plotOpt, TString &drawOpt)
 
TGraphErrors * GetDrawnGraph()
 
TGraphErrors * fGraph
Output Kernel Density Estimation approximate bias.
 
void SetCanonicalBandwidths()
 
TKDE()
default constructor used by I/O
 
void SetBinCentreData(Double_t xmin, Double_t xmax)
 
TKDE(const Char_t *, const KernelFunction &kernfunc, UInt_t events, const Double_t *data, Double_t xMin=0.0, Double_t xMax=0.0, const Option_t *option="KernelType:UserDefined;Iteration:Adaptive;Mirror:noMirror;Binning:RelaxedBinning", Double_t rho=1.0)
 
void SetTuneFactor(Double_t rho)
 
UInt_t Index(Double_t x) const
 
TF1 * fUpperPDF
Output Kernel Density Estimation PDF function.
 
Double_t ComputeKernelMu() const
 
void DrawErrors(TString &drawOpt)
 
void SetNBins(UInt_t nbins)
 
void CheckOptions(Bool_t isUserDefinedKernel=kFALSE)
 
Double_t EpanechnikovKernel(Double_t x) const
 
Double_t BiweightKernel(Double_t x) const
 
Bool_t fUseMinMaxFromData
 
Double_t GetSigma() const
 
EKernelType fKernelType
Graph with the errors.
 
TF1 * fApproximateBias
Output Kernel Density Estimation lower confidence interval PDF function.
 
TKDE operator=(TKDE &kde)
 
void SetSigma(Double_t R)
 
TKDE(UInt_t events, const Double_t *data, Double_t xMin=0.0, Double_t xMax=0.0, const Option_t *option="KernelType:Gaussian;Iteration:Adaptive;Mirror:noMirror;Binning:RelaxedBinning", Double_t rho=1.0)
 
std::vector< Double_t > fEventWeights
 
TF1 * GetApproximateBias(UInt_t npx=100, Double_t xMin=1.0, Double_t xMax=0.0)
 
TF1 * GetLowerFunction(Double_t confidenceLevel=0.95, UInt_t npx=100, Double_t xMin=1.0, Double_t xMax=0.0)
 
TKDE(UInt_t events, const Double_t *data, const Double_t *dataWeight, Double_t xMin=0.0, Double_t xMax=0.0, const Option_t *option="KernelType:Gaussian;Iteration:Adaptive;Mirror:noMirror;Binning:RelaxedBinning", Double_t rho=1.0)
 
KernelFunction_Ptr fKernelFunction
 
friend struct KernelIntegrand
 
The TNamed class is the base class for all named ROOT classes.