Adagrad Optimizer class.
This class represents the Adagrad Optimizer.
| Public Types | |
| using | Matrix_t = typename Architecture_t::Matrix_t | 
| using | Scalar_t = typename Architecture_t::Scalar_t | 
|  Public Types inherited from TMVA::DNN::VOptimizer< Architecture_t, VGeneralLayer< Architecture_t >, TDeepNet< Architecture_t, VGeneralLayer< Architecture_t > > > | |
| using | Matrix_t = typename Architecture_t::Matrix_t | 
| using | Scalar_t = typename Architecture_t::Scalar_t | 
| Public Member Functions | |
| TAdagrad (DeepNet_t &deepNet, Scalar_t learningRate=0.01, Scalar_t epsilon=1e-8) | |
| Constructor.  More... | |
| ~TAdagrad ()=default | |
| Destructor.  More... | |
| Scalar_t | GetEpsilon () const | 
| Getters.  More... | |
| std::vector< std::vector< Matrix_t > > & | GetPastSquaredBiasGradients () | 
| std::vector< Matrix_t > & | GetPastSquaredBiasGradientsAt (size_t i) | 
| std::vector< std::vector< Matrix_t > > & | GetPastSquaredWeightGradients () | 
| std::vector< Matrix_t > & | GetPastSquaredWeightGradientsAt (size_t i) | 
|  Public Member Functions inherited from TMVA::DNN::VOptimizer< Architecture_t, VGeneralLayer< Architecture_t >, TDeepNet< Architecture_t, VGeneralLayer< Architecture_t > > > | |
| VOptimizer (Scalar_t learningRate, TDeepNet< Architecture_t, VGeneralLayer< Architecture_t > > &deepNet) | |
| Constructor.  More... | |
| virtual | ~VOptimizer ()=default | 
| Virtual Destructor.  More... | |
| size_t | GetGlobalStep () const | 
| VGeneralLayer< Architecture_t > * | GetLayerAt (size_t i) | 
| std::vector< VGeneralLayer< Architecture_t > * > & | GetLayers () | 
| Scalar_t | GetLearningRate () const | 
| Getters.  More... | |
| void | IncrementGlobalStep () | 
| Increments the global step.  More... | |
| void | SetLearningRate (size_t learningRate) | 
| Setters.  More... | |
| void | Step () | 
| Performs one step of optimization.  More... | |
| Protected Member Functions | |
| void | UpdateBiases (size_t layerIndex, std::vector< Matrix_t > &biases, const std::vector< Matrix_t > &biasGradients) | 
| Update the biases, given the current bias gradients.  More... | |
| void | UpdateWeights (size_t layerIndex, std::vector< Matrix_t > &weights, const std::vector< Matrix_t > &weightGradients) | 
| Update the weights, given the current weight gradients.  More... | |
| virtual void | UpdateBiases (size_t layerIndex, std::vector< Matrix_t > &biases, const std::vector< Matrix_t > &biasGradients)=0 | 
| Update the biases, given the current bias gradients.  More... | |
| virtual void | UpdateWeights (size_t layerIndex, std::vector< Matrix_t > &weights, const std::vector< Matrix_t > &weightGradients)=0 | 
| Update the weights, given the current weight gradients.  More... | |
| Protected Attributes | |
| Scalar_t | fEpsilon | 
| The Smoothing term used to avoid division by zero.  More... | |
| std::vector< std::vector< Matrix_t > > | fPastSquaredBiasGradients | 
| The sum of the square of the past bias gradients associated with the deep net.  More... | |
| std::vector< std::vector< Matrix_t > > | fPastSquaredWeightGradients | 
| The sum of the square of the past weight gradients associated with the deep net.  More... | |
| std::vector< std::vector< Matrix_t > > | fWorkBiasTensor | 
| working tensor used to keep a temporary copy of bias or bias gradients  More... | |
| std::vector< std::vector< Matrix_t > > | fWorkWeightTensor | 
| working tensor used to keep a temporary copy of weights or weight gradients  More... | |
|  Protected Attributes inherited from TMVA::DNN::VOptimizer< Architecture_t, VGeneralLayer< Architecture_t >, TDeepNet< Architecture_t, VGeneralLayer< Architecture_t > > > | |
| TDeepNet< Architecture_t, VGeneralLayer< Architecture_t > > & | fDeepNet | 
| The reference to the deep net.  More... | |
| size_t | fGlobalStep | 
| The current global step count during training.  More... | |
| Scalar_t | fLearningRate | 
| The learning rate used for training.  More... | |
#include <TMVA/DNN/Adagrad.h>
| using TMVA::DNN::TAdagrad< Architecture_t, Layer_t, DeepNet_t >::Matrix_t = typename Architecture_t::Matrix_t | 
| using TMVA::DNN::TAdagrad< Architecture_t, Layer_t, DeepNet_t >::Scalar_t = typename Architecture_t::Scalar_t | 
| TMVA::DNN::TAdagrad< Architecture_t, Layer_t, DeepNet_t >::TAdagrad | ( | DeepNet_t & | deepNet, | 
| Scalar_t | learningRate = 0.01, | ||
| Scalar_t | epsilon = 1e-8 | ||
| ) | 
| 
 | default | 
Destructor.
| 
 | inline | 
| 
 | inline | 
| 
 | inline | 
| 
 | inline | 
| 
 | inline | 
| 
 | protectedvirtual | 
Update the biases, given the current bias gradients.
| 
 | protectedvirtual | 
Update the weights, given the current weight gradients.
| 
 | protected | 
| 
 | protected | 
| 
 | protected | 
| 
 | protected | 
| 
 | protected |