FCN=2613.61 FROM MIGRAD    STATUS=CONVERGED    1090 CALLS        1091 TOTAL
                     EDM=1.5599e-08    STRATEGY= 1  ERROR MATRIX UNCERTAINTY   3.7 per cent
  EXT PARAMETER                                   STEP         FIRST   
  NO.   NAME      VALUE            ERROR          SIZE      DERIVATIVE 
   1  p0           5.34104e+02   2.25626e+00  -1.45532e-03   2.18435e-05
   2  p1           6.00014e+00   5.67524e-03  -2.38292e-06  -3.27949e-02
   3  p2           1.98724e+00   3.63694e-03  -2.58780e-06  -5.50559e-03
   4  p3           7.02973e+00   2.65118e-02  -2.44324e-05  -1.18794e-02
   5  p4           2.99679e+00   1.39392e-02  -1.13807e-05   1.50299e-02
   6  p5           5.19346e+02   5.08272e+01   3.87334e-02  -2.41684e-05
   7  p6           1.15499e+01   4.81865e-01   5.78545e-04   4.63910e-03
   8  p7           2.72921e+00   2.57821e-01   2.95923e-04  -5.50344e-03
   9  p8           1.11977e+01   2.40323e-01  -9.65097e-05   7.16022e-03
  10  p9           2.08422e+00   1.01013e-01  -2.43739e-05  -1.10303e-02
 FCN=2220.46 FROM MIGRAD    STATUS=CONVERGED     333 CALLS         334 TOTAL
                     EDM=6.12528e-07    STRATEGY= 1  ERROR MATRIX UNCERTAINTY   1.1 per cent
  EXT PARAMETER                                   STEP         FIRST   
  NO.   NAME      VALUE            ERROR          SIZE      DERIVATIVE 
   1  p0           5.30875e+02   1.56318e+00  -8.45958e-04   2.13120e-04
   2  p1           6.01215e+00   1.39029e-02   5.56975e-05   1.20143e-01
   3  p2           1.99424e+00   1.02676e-02  -3.65137e-05   1.99143e-01
   4  p3           6.98634e+00   1.77537e-02   4.59097e-06   1.88058e-02
   5  p4           2.98764e+00   1.14564e-02   5.16037e-06   2.41585e-02
   6  p5           5.32751e+02   1.16044e+00   9.85153e-04   1.59279e-03
   7  p6           1.19894e+01   8.92126e-03   7.18458e-06   8.54804e-02
   8  p7           2.99536e+00   6.32688e-03  -5.28473e-06   3.40897e-01
   9  p8           1.09975e+01   3.41959e-03  -1.79221e-06   2.14024e-02
  10  p9           1.98880e+00   2.41489e-03   5.35898e-07   3.99846e-01
(int) 0
 
 
#include <iostream>
 
double gauss2D(
double *
x, 
double *par) {
 
   double z1 = double((
x[0]-par[1])/par[2]);
 
   double z2 = double((
x[1]-par[3])/par[4]);
 
   return par[0]*
exp(-0.5*(z1*z1+z2*z2));
 
}
double my2Dfunc(
double *
x, 
double *par) {
 
   return gauss2D(
x,&par[0]) + gauss2D(
x,&par[5]);
 
}
 
 
 
{
 
 
   double chi2 = 0;
   double tmp;
   npfits = 0;
   for (int ix = 1; ix <= nbinX1; ++ix) {
      for (int iy = 1; iy <= nbinY1; ++iy) {
         chi2 += tmp*tmp;
         npfits++;
         }
      }
   }
   for (int ix = 1; ix <= nbinX2; ++ix) {
      for (int iy = 1; iy <= nbinY2; ++iy) {
         chi2 += tmp*tmp;
         npfits++;
         }
      }
   }
   fval = chi2;
}
 
void FillHisto(
TH2D * 
h, 
int n, 
double * p) {
 
 
 
   const double mx1 = p[1];
   const double my1 = p[3];
   const double sx1 = p[2];
   const double sy1 = p[4];
   const double mx2 = p[6];
   const double my2 = p[8];
   const double sx2 = p[7];
   const double sy2 = p[9];
   
   const double w1 = 0.5;
 
   for (
int i = 0; i < 
n; ++i) {
 
      
 
      }
      else {
      }
 
   }
}
 
 
 
 
int fit2dHist(int option=1) {
 
   
 
   int nbx1 = 50;
   int nby1 = 50;
   int nbx2 = 50;
   int nby2 = 50;
   double xlow1 = 0.;
   double ylow1 = 0.;
   double xup1 = 10.;
   double yup1 = 10.;
   double xlow2 = 5.;
   double ylow2 = 5.;
   double xup2 = 20.;
   double yup2 = 20.;
 
   h1 = 
new TH2D(
"h1",
"core",nbx1,xlow1,xup1,nby1,ylow1,yup1);
 
   h2 = 
new TH2D(
"h2",
"tails",nbx2,xlow2,xup2,nby2,ylow2,yup2);
 
   double iniParams[10] = { 100, 6., 2., 7., 3, 100, 12., 3., 11., 2. };
   
   TF2 * func = 
new TF2(
"func",my2Dfunc,xlow2,xup2,ylow2,yup2, 10);
 
 
   
   int n1 = 1000000;
   int n2 = 1000000;
   FillHisto(
h1,n1,iniParams);
   FillHisto(h2,n2,iniParams);
 
   
   double dx1 = (xup1-xlow1)/double(nbx1);
   double dy1 = (yup1-ylow1)/double(nby1);
   double dx2 = (xup2-xlow2)/double(nbx2);
   double dy2 = (yup2-ylow2)/double(nby2);
   
   h2->
Scale(  ( 
double(n1) * dx1 * dy1 )  / ( 
double(n2) * dx2 * dy2 ) );
 
   bool global = false;
   if (option > 10) global = true;
   if (global) {
      
      std::cout << "Do global fit" << std::endl;
      
 
      
      for (int i = 0; i < 10; ++i) {
      }
 
      double arglist[100];
      arglist[0] = 0;
      
 
      
      arglist[0] = 5000; 
      arglist[1] = 0.01; 
 
      
      double minParams[10];
      double parErrors[10];
      for (int i = 0; i < 10; ++i) {
      }
      double chi2, edm, errdef;
      int nvpar, nparx;
      minuit->
GetStats(chi2,edm,errdef,nvpar,nparx);
 
      int ndf = npfits-nvpar;
 
      
   }
   else {
      
   }
 
   
 
   func->
Draw(
"surf1 same");
 
   return 0;
}
R__EXTERN TStyle * gStyle
Class to manage histogram axis.
virtual Double_t GetBinCenter(Int_t bin) const
Return center of bin.
virtual void SetNDF(Int_t ndf)
Set the number of degrees of freedom ndf should be the number of points used in a fit - the number of...
virtual void SetChisquare(Double_t chi2)
virtual void SetParErrors(const Double_t *errors)
Set errors for all active parameters when calling this function, the array errors must have at least ...
virtual const char * GetParName(Int_t ipar) const
virtual void SetParameters(const Double_t *params)
virtual Double_t GetParameter(Int_t ipar) const
A 2-Dim function with parameters.
virtual TF1 * DrawCopy(Option_t *option="") const
Draw a copy of this function with its current attributes-*.
virtual void SetRange(Double_t xmin, Double_t xmax)
Initialize the upper and lower bounds to draw the function.
virtual void Draw(Option_t *option="")
Draw this function with its current attributes.
virtual Int_t GetNbinsY() const
virtual Double_t GetBinError(Int_t bin) const
Return value of error associated to bin number bin.
TAxis * GetXaxis()
Get the behaviour adopted by the object about the statoverflows. See EStatOverflows for more informat...
virtual TFitResultPtr Fit(const char *formula, Option_t *option="", Option_t *goption="", Double_t xmin=0, Double_t xmax=0)
Fit histogram with function fname.
virtual Int_t GetNbinsX() const
TList * GetListOfFunctions() const
virtual void Draw(Option_t *option="")
Draw this histogram with options.
virtual Double_t GetBinContent(Int_t bin) const
Return content of bin number bin.
virtual void Scale(Double_t c1=1, Option_t *option="")
Multiply this histogram by a constant c1.
virtual void Sumw2(Bool_t flag=kTRUE)
Create structure to store sum of squares of weights.
2-D histogram with a double per channel (see TH1 documentation)}
virtual Double_t GetBinContent(Int_t bin) const
Return content of bin number bin.
virtual void Add(TObject *obj)
Random number generator class based on M.
virtual Double_t Rndm()
Machine independent random number generator.
virtual void Rannor(Float_t &a, Float_t &b)
Return 2 numbers distributed following a gaussian with mean=0 and sigma=1.
void SetStatY(Float_t y=0)
void SetOptFit(Int_t fit=1)
The type of information about fit parameters printed in the histogram statistics box can be selected ...
Abstract Base Class for Fitting.
static void SetDefaultFitter(const char *name="")
static: set name of default fitter
virtual Int_t GetStats(Double_t &amin, Double_t &edm, Double_t &errdef, Int_t &nvpar, Int_t &nparx) const =0
virtual void SetFCN(void(*fcn)(Int_t &, Double_t *, Double_t &f, Double_t *, Int_t))
To set the address of the minimization objective function called by the native compiler (see function...
virtual Double_t GetParError(Int_t ipar) const =0
virtual Int_t SetParameter(Int_t ipar, const char *parname, Double_t value, Double_t verr, Double_t vlow, Double_t vhigh)=0
virtual Int_t ExecuteCommand(const char *command, Double_t *args, Int_t nargs)=0
virtual Double_t GetParameter(Int_t ipar) const =0
static TVirtualFitter * Fitter(TObject *obj, Int_t maxpar=25)
Static function returning a pointer to the current fitter.