 
  Tutorial for convolution of two functions
  Tutorial for convolution of two functions 
  
 FCN=298.12 FROM MIGRAD    STATUS=CONVERGED     457 CALLS         458 TOTAL
                     EDM=1.08093e-08    STRATEGY= 1      ERROR MATRIX ACCURATE 
  EXT PARAMETER                                   STEP         FIRST   
  NO.   NAME      VALUE            ERROR          SIZE      DERIVATIVE 
   1  p0           7.32859e+00   3.70795e-02   1.23437e-05  -3.46193e-02
   2  p1           7.33040e-02   2.44083e-03   3.62176e-06  -7.16223e-02
   3  p2          -2.26420e+00   4.91803e-02   5.24021e-05  -1.27917e-02
   4  p3           1.12811e+00   6.28810e-02   1.94847e-05  -2.72591e-02
 
#include <stdio.h>
#include <iostream>
#include <math.h>
 
using namespace std;
 
void fitConvolution()
{
   
   TH1F *h_ExpGauss = 
new TH1F(
"h_ExpGauss",
"Exponential convoluted by gaussian",100,0.,5.);
 
   for (int i=0;i<1e6;i++)
   {
   }
 
   f->SetParameters(1.,-0.3,0.,1.);
 
 
   
 
}
R__EXTERN TRandom * gRandom
Class wrapping convolution of two functions.
void SetRange(Double_t a, Double_t b)
void SetNofPointsFFT(Int_t n)
1-D histogram with a float per channel (see TH1 documentation)}
virtual Int_t Fill(Double_t x)
Increment bin with abscissa X by 1.
virtual void Draw(Option_t *option="")
Draw this histogram with options.
virtual Double_t Gaus(Double_t mean=0, Double_t sigma=1)
Samples a random number from the standard Normal (Gaussian) Distribution with the given mean and sigm...
virtual Double_t Exp(Double_t tau)
Returns an exponential deviate.
TFitResultPtr Fit(FitObject *h1, TF1 *f1, Foption_t &option, const ROOT::Math::MinimizerOptions &moption, const char *goption, ROOT::Fit::DataRange &range)
- Author
- Aurelie Flandi 
Definition in file fitConvolution.C.