102 fDataSetManager(NULL)
111 std::vector<TTreeFormula*>::iterator formIt = fCatFormulas.begin();
112 std::vector<TTreeFormula*>::iterator lastF = fCatFormulas.end();
113 for(;formIt!=lastF; ++formIt)
delete *formIt;
123 std::vector<IMethod*>::iterator itrMethod = fMethods.begin();
126 for(; itrMethod != fMethods.end(); ++itrMethod ) {
127 if ( !(*itrMethod)->HasAnalysisType(
type, numberClasses, numberTargets) )
151 Log() << kINFO <<
"Adding sub-classifier: " << addedMethodName <<
"::" << theTitle <<
Endl;
153 DataSetInfo& dsi = CreateCategoryDSI(theCut, theVariables, theTitle);
158 if(method==0)
return 0;
186 fMethods.push_back(method);
187 fCategoryCuts.push_back(theCut);
188 fVars.push_back(theVariables);
193 fCategorySpecIdx.push_back(newSpectatorIndex);
210 TString dsiName=theTitle+
"_dsi";
216 fDataSetManager->AddDataSetInfo(*dsi);
219 std::vector<VariableInfo>::iterator itrVarInfo;
231 std::vector<UInt_t> varMap;
235 std::vector<TString>::iterator itrVariables;
239 for (itrVariables =
variables.begin(); itrVariables !=
variables.end(); ++itrVariables) {
244 if((*itrVariables==itrVarInfo->GetLabel()) ) {
248 varMap.push_back(counter);
256 if((*itrVariables==itrVarInfo->GetLabel()) ) {
260 varMap.push_back(counter);
268 Log() << kFATAL <<
"The variable " << itrVariables->Data() <<
" was not found and could not be added " <<
Endl;
274 if (theVariables==
"") {
282 fVarMaps.push_back(varMap);
288 for (
UInt_t i=0; i<nClasses; i++) {
292 dsi->
AddCut(theCut,className);
321 std::vector<VariableInfo>::const_iterator viIt;
326 for (viIt = vars.begin(); viIt != vars.end(); ++viIt)
327 if( viIt->GetExternalLink() == 0 ) {
328 hasAllExternalLinks =
kFALSE;
331 for (viIt = specs.begin(); viIt != specs.end(); ++viIt)
332 if( viIt->GetExternalLink() == 0 ) {
333 hasAllExternalLinks =
kFALSE;
337 if(!hasAllExternalLinks)
return;
346 fCatTree->SetCircular(1);
349 for (viIt = vars.begin(); viIt != vars.end(); ++viIt) {
353 for (viIt = specs.begin(); viIt != specs.end(); ++viIt) {
359 for(
UInt_t cat=0; cat!=fCategoryCuts.size(); ++cat) {
360 fCatFormulas.push_back(
new TTreeFormula(
Form(
"Category_%i",cat), fCategoryCuts[cat].GetTitle(), fCatTree));
375 Log() << kINFO <<
"Train all sub-classifiers for "
379 if (fMethods.empty()) {
380 Log() << kINFO <<
"...nothing found to train" <<
Endl;
384 std::vector<IMethod*>::iterator itrMethod;
387 for (itrMethod = fMethods.begin(); itrMethod != fMethods.end(); ++itrMethod ) {
400 itrMethod = fMethods.erase( itrMethod );
408 Log() << kINFO <<
"Training finished" <<
Endl;
413 <<
" not trained (training tree has less entries ["
417 Log() << kERROR <<
" w/o training/test events for that category, I better stop here and let you fix " <<
Endl;
418 Log() << kFATAL <<
"that one first, otherwise things get too messy later ... " <<
Endl;
426 Log() << kINFO <<
"Begin ranking of input variables..." <<
Endl;
427 for (itrMethod = fMethods.begin(); itrMethod != fMethods.end(); ++itrMethod) {
430 const Ranking* ranking = (*itrMethod)->CreateRanking();
434 Log() << kINFO <<
"No variable ranking supplied by classifier: "
451 for (
UInt_t i=0; i<fMethods.size(); i++) {
477 Log() << kINFO <<
"Recreating sub-classifiers from XML-file " <<
Endl;
480 for (
UInt_t i=0; i<nSubMethods; i++) {
486 methodType = fullMethodName(0,fullMethodName.
Index(
"::"));
487 if (methodType.
Contains(
" ")) methodType = methodType(methodType.
Last(
' ')+1,methodType.
Length());
490 titleLength = fullMethodName.
Length()-fullMethodName.
Index(
"::")-2;
491 methodTitle = fullMethodName(fullMethodName.
Index(
"::")+2,titleLength);
494 DataSetInfo& dsi = CreateCategoryDSI(
TCut(theCutString), theVariables, methodTitle);
500 Log() << kFATAL <<
"Could not create sub-method " << method <<
" from XML." <<
Endl;
505 fMethods.push_back(method);
506 fCategoryCuts.push_back(
TCut(theCutString));
507 fVars.push_back(theVariables);
511 UInt_t spectatorIdx = 10000;
516 std::vector<VariableInfo>::iterator itrVarInfo;
517 TString specName=
Form(
"%s_cat%i", GetName(),(
int)fCategorySpecIdx.size()+1);
519 for (itrVarInfo = spectators.begin(); itrVarInfo != spectators.end(); ++itrVarInfo, ++counter) {
520 if((specName==itrVarInfo->GetLabel()) || (specName==itrVarInfo->GetExpression())) {
521 spectatorIdx=counter;
522 fCategorySpecIdx.push_back(spectatorIdx);
530 InitCircularTree(DataInfo());
552 Log() <<
"This method allows to define different categories of events. The" <<
Endl;
553 Log() <<
"categories are defined via cuts on the variables. For each" <<
Endl;
554 Log() <<
"category, a different classifier and set of variables can be" <<
Endl;
555 Log() <<
"specified. The categories which are defined for this method must" <<
Endl;
556 Log() <<
"be disjoint." <<
Endl;
575 if (methodIdx>=fCatFormulas.size()) {
576 Log() << kFATAL <<
"Large method index " << methodIdx <<
", number of category formulas = "
577 << fCatFormulas.size() <<
Endl;
580 return f->EvalInstance(0) > 0.5;
586 if (methodIdx>=fCategorySpecIdx.size()) {
587 Log() << kFATAL <<
"Unknown method index " << methodIdx <<
" maximum allowed index="
588 << fCategorySpecIdx.size() <<
Endl;
590 UInt_t spectatorIdx = fCategorySpecIdx[methodIdx];
592 Bool_t pass = (specVal>0.5);
602 if (fMethods.empty())
return 0;
605 const Event* ev = GetEvent();
608 Int_t suitableCutsN = 0;
610 for (
UInt_t i=0; i<fMethods.size(); ++i) {
611 if (PassesCut(ev, i)) {
617 if (suitableCutsN == 0) {
618 Log() << kWARNING <<
"Event does not lie within the cut of any sub-classifier." <<
Endl;
622 if (suitableCutsN > 1) {
623 Log() << kFATAL <<
"The defined categories are not disjoint." <<
Endl;
629 Double_t mvaValue =
dynamic_cast<MethodBase*
>(fMethods[methodToUse])->GetMvaValue(ev,err,errUpper);
645 const Event* ev = GetEvent();
648 Int_t suitableCutsN = 0;
650 for (
UInt_t i=0; i<fMethods.size(); ++i) {
651 if (PassesCut(ev, i)) {
657 if (suitableCutsN == 0) {
658 Log() << kWARNING <<
"Event does not lie within the cut of any sub-classifier." <<
Endl;
662 if (suitableCutsN > 1) {
663 Log() << kFATAL <<
"The defined categories are not disjoint." <<
Endl;
668 Log() << kFATAL <<
"method not found in Category Regression method" <<
Endl;
#define REGISTER_METHOD(CLASS)
for example
char * Form(const char *fmt,...)
A specialized string object used for TTree selections.
Small helper to keep current directory context.
Describe directory structure in memory.
virtual TDirectory * GetDirectory(const char *namecycle, Bool_t printError=false, const char *funcname="GetDirectory")
Find a directory using apath.
IMethod * Create(const std::string &name, const TString &job, const TString &title, DataSetInfo &dsi, const TString &option)
creates the method if needed based on the method name using the creator function the factory has stor...
static ClassifierFactory & Instance()
access to the ClassifierFactory singleton creates the instance if needed
virtual void ParseOptions()
options parser
Class that contains all the data information.
const TString GetWeightExpression(Int_t i) const
std::vector< VariableInfo > & GetVariableInfos()
void SetSplitOptions(const TString &so)
ClassInfo * AddClass(const TString &className)
const TString & GetNormalization() const
std::vector< VariableInfo > & GetSpectatorInfos()
TDirectory * GetRootDir() const
void SetNormalization(const TString &norm)
UInt_t GetNClasses() const
const TString & GetSplitOptions() const
UInt_t GetNTargets() const
VariableInfo & AddTarget(const TString &expression, const TString &title, const TString &unit, Double_t min, Double_t max, Bool_t normalized=kTRUE, void *external=0)
add a variable (can be a complex expression) to the set of variables used in the MV analysis
VariableInfo & AddSpectator(const TString &expression, const TString &title, const TString &unit, Double_t min, Double_t max, char type='F', Bool_t normalized=kTRUE, void *external=0)
add a spectator (can be a complex expression) to the set of spectator variables used in the MV analys...
ClassInfo * GetClassInfo(Int_t clNum) const
const TCut & GetCut(Int_t i) const
void SetCut(const TCut &cut, const TString &className)
set the cut for the classes
VariableInfo & AddVariable(const TString &expression, const TString &title="", const TString &unit="", Double_t min=0, Double_t max=0, char varType='F', Bool_t normalized=kTRUE, void *external=0)
add a variable (can be a complex expression) to the set of variables used in the MV analysis
std::vector< VariableInfo > & GetTargetInfos()
void SetRootDir(TDirectory *d)
void SetWeightExpression(const TString &exp, const TString &className="")
set the weight expressions for the classes if class name is specified, set only for this class if cla...
void AddCut(const TCut &cut, const TString &className)
set the cut for the classes
Long64_t GetNTrainingEvents() const
void SetVariableArrangement(std::vector< UInt_t > *const m) const
set the variable arrangement
Float_t GetSpectator(UInt_t ivar) const
return spectator content
Interface for all concrete MVA method implementations.
virtual Bool_t HasAnalysisType(Types::EAnalysisType type, UInt_t numberClasses, UInt_t numberTargets)=0
Virtual base Class for all MVA method.
virtual const std::vector< Float_t > & GetRegressionValues()
const std::vector< Float_t > & GetRegressionValues(const TMVA::Event *const ev)
void SetSilentFile(Bool_t status)
void SetWeightFileDir(TString fileDir)
set directory of weight file
void WriteStateToXML(void *parent) const
general method used in writing the header of the weight files where the used variables,...
TString GetMethodTypeName() const
void DisableWriting(Bool_t setter)
const char * GetName() const
void SetupMethod()
setup of methods
virtual void SetAnalysisType(Types::EAnalysisType type)
const TString & GetMethodName() const
void ProcessSetup()
process all options the "CheckForUnusedOptions" is done in an independent call, since it may be overr...
DataSetInfo & DataInfo() const
void SetFile(TFile *file)
void ReadStateFromXML(void *parent)
friend class MethodCategory
void SetMethodBaseDir(TDirectory *methodDir)
void SetModelPersistence(Bool_t status)
virtual void CheckSetup()
check may be overridden by derived class (sometimes, eg, fitters are used which can only be implement...
Class for categorizing the phase space.
void InitCircularTree(const DataSetInfo &dsi)
initialize the circular tree
void GetHelpMessage() const
Get help message text.
void Init()
initialize the method
Bool_t PassesCut(const Event *ev, UInt_t methodIdx)
virtual Bool_t HasAnalysisType(Types::EAnalysisType type, UInt_t numberClasses, UInt_t)
check whether method category has analysis type the method type has to be the same for all sub-method...
void ProcessOptions()
process user options
Double_t GetMvaValue(Double_t *err=0, Double_t *errUpper=0)
returns the mva value of the right sub-classifier
TMVA::DataSetInfo & CreateCategoryDSI(const TCut &, const TString &, const TString &)
create a DataSetInfo object for a sub-classifier
void DeclareOptions()
options for this method
void AddWeightsXMLTo(void *parent) const
create XML description of Category classifier
const Ranking * CreateRanking()
no ranking
virtual ~MethodCategory(void)
destructor
virtual const std::vector< Float_t > & GetRegressionValues()
returns the mva value of the right sub-classifier
TMVA::IMethod * AddMethod(const TCut &, const TString &theVariables, Types::EMVA theMethod, const TString &theTitle, const TString &theOptions)
adds sub-classifier for a category
void ReadWeightsFromXML(void *wghtnode)
read weights of sub-classifiers of MethodCategory from xml weight file
void Train(void)
train all sub-classifiers
Virtual base class for combining several TMVA method.
Ranking for variables in method (implementation)
virtual void Print() const
get maximum length of variable names
Singleton class for Global types used by TMVA.
static Types & Instance()
the the single instance of "Types" if existing already, or create it (Singleton)
Class for type info of MVA input variable.
const TString & GetExpression() const
void * GetExternalLink() const
virtual const char * GetTitle() const
Returns title of object.
virtual const char * GetName() const
Returns name of object.
const char * Data() const
Ssiz_t Last(char c) const
Find last occurrence of a character c.
Bool_t Contains(const char *pat, ECaseCompare cmp=kExact) const
Ssiz_t Index(const char *pat, Ssiz_t i=0, ECaseCompare cmp=kExact) const
A TTree represents a columnar dataset.
void GetMethodName(TString &name, TKey *mkey)
create variable transformations
void variables(TString dataset, TString fin="TMVA.root", TString dirName="InputVariables_Id", TString title="TMVA Input Variables", Bool_t isRegression=kFALSE, Bool_t useTMVAStyle=kTRUE)
MsgLogger & Endl(MsgLogger &ml)
const Int_t MinNoTrainingEvents