Logo ROOT  
Reference Guide
TRotation.cxx
Go to the documentation of this file.
1// @(#)root/physics:$Id$
2// Author: Peter Malzacher 19/06/99
3
4/** \class TRotation
5 \ingroup Physics
6
7The TRotation class describes a rotation of objects of the TVector3 class.
8It is a 3*3 matrix of Double_t:
9
10~~~
11| xx xy xz |
12| yx yy yz |
13| zx zy zz |
14~~~
15
16It describes a so called active rotation, i.e. rotation of objects inside
17a static system of coordinates. In case you want to rotate the frame and
18want to know the coordinates of objects in the rotated system, you should
19apply the inverse rotation to the objects. If you want to transform coordinates
20from the rotated frame to the original frame you have to apply the direct
21transformation.
22
23A rotation around a specified axis means counterclockwise rotation around
24the positive direction of the axis.
25
26
27### Declaration, Access, Comparisons
28
29~~~
30 TRotation r; // r initialized as identity
31 TRotation m(r); // m = r
32~~~
33
34There is no direct way to set the matrix elements - to ensure that
35a TRotation object always describes a real rotation. But you can get the
36values by the member functions XX()..ZZ() or the (,)
37operator:
38
39~~~
40 Double_t xx = r.XX(); // the same as xx=r(0,0)
41 xx = r(0,0);
42
43 if (r==m) {...} // test for equality
44 if (r!=m) {..} // test for inequality
45 if (r.IsIdentity()) {...} // test for identity
46~~~
47
48### Rotation around axes
49The following matrices describe counterclockwise rotations around coordinate
50axes
51
52~~~
53 | 1 0 0 |
54Rx(a) = | 0 cos(a) -sin(a) |
55 | 0 sin(a) cos(a) |
56
57 | cos(a) 0 sin(a) |
58Ry(a) = | 0 1 0 |
59 | -sin(a) 0 cos(a) |
60
61 | cos(a) -sin(a) 0 |
62Rz(a) = | sin(a) cos(a) 0 |
63 | 0 0 1 |
64~~~
65
66and are implemented as member functions RotateX(), RotateY() and RotateZ():
67
68~~~
69 r.RotateX(TMath::Pi()); // rotation around the x-axis
70~~~
71
72### Rotation around arbitrary axis
73The member function Rotate() allows to rotate around an arbitrary vector
74(not necessary a unit one) and returns the result.
75
76~~~
77 r.Rotate(TMath::Pi()/3,TVector3(3,4,5));
78~~~
79
80It is possible to find a unit vector and an angle, which describe the
81same rotation as the current one:
82
83~~~
84 Double_t angle;
85 TVector3 axis;
86 r.GetAngleAxis(angle,axis);
87~~~
88
89### Rotation of local axes
90Member function RotateAxes() adds a rotation of local axes to
91the current rotation and returns the result:
92
93~~~
94 TVector3 newX(0,1,0);
95 TVector3 newY(0,0,1);
96 TVector3 newZ(1,0,0);
97 a.RotateAxes(newX,newY,newZ);
98~~~
99
100Member functions ThetaX(), ThetaY(), ThetaZ(),
101PhiX(), PhiY(),PhiZ() return azimuth and polar
102angles of the rotated axes:
103
104~~~
105 Double_t tx,ty,tz,px,py,pz;
106 tx= a.ThetaX();
107 ...
108 pz= a.PhiZ();
109~~~
110
111### Setting The Rotations
112The member function SetToIdentity() will set the rotation object
113to the identity (no rotation).
114
115With a minor caveat, the Euler angles of the rotation may be set using
116SetXEulerAngles() or individually set with SetXPhi(),
117SetXTheta(), and SetXPsi(). These routines set the Euler
118angles using the X-convention which is defined by a rotation about the Z-axis,
119about the new X-axis, and about the new Z-axis. This is the convention used
120in Landau and Lifshitz, Goldstein and other common physics texts. The
121Y-convention Euler angles can be set with SetYEulerAngles(),
122SetYPhi(), SetYTheta(), and SetYPsi(). The caveat
123is that Euler angles usually define the rotation of the new coordinate system
124with respect to the original system, however, the TRotation class specifies
125the rotation of the object in the original system (an active rotation). To
126recover the usual Euler rotations (ie. rotate the system not the object), you
127must take the inverse of the rotation.
128
129The member functions SetXAxis(), SetYAxis(), and
130SetZAxis() will create a rotation which rotates the requested axis
131of the object to be parallel to a vector. If used with one argument, the
132rotation about that axis is arbitrary. If used with two arguments, the
133second variable defines the XY, YZ, or ZX
134respectively.
135
136
137### Inverse rotation
138
139~~~
140 TRotation a,b;
141 ...
142 b = a.Inverse(); // b is inverse of a, a is unchanged
143 b = a.Invert(); // invert a and set b = a
144~~~
145
146### Compound Rotations
147The operator * has been implemented in a way that follows the
148mathematical notation of a product of the two matrices which describe the
149two consecutive rotations. Therefore the second rotation should be placed
150first:
151
152~~~
153 r = r2 * r1;
154~~~
155
156### Rotation of TVector3
157The TRotation class provides an operator * which allows to express
158a rotation of a TVector3 analog to the mathematical notation
159
160~~~
161 | x' | | xx xy xz | | x |
162 | y' | = | yx yy yz | | y |
163 | z' | | zx zy zz | | z |
164~~~
165
166e.g.:
167
168~~~
169 TVector3 v(1,1,1);
170 v = r * v;
171~~~
172
173You can also use the Transform() member function or the operator *= of the
174TVector3 class:
175
176~~~
177 TVector3 v;
178 TRotation r;
179 v.Transform(r);
180 v *= r; //Attention v = r * v
181~~~
182*/
183
184#include "TRotation.h"
185#include "TMath.h"
186#include "TQuaternion.h"
187
189
190#define TOLERANCE (1.0E-6)
191
192////////////////////////////////////////////////////////////////////////////////
193/// Constructor.
194
196: fxx(1.0), fxy(0.0), fxz(0.0), fyx(0.0), fyy(1.0), fyz(0.0),
197 fzx(0.0), fzy(0.0), fzz(1.0) {}
198
199////////////////////////////////////////////////////////////////////////////////
200/// Constructor.
201
203 fxx(m.fxx), fxy(m.fxy), fxz(m.fxz), fyx(m.fyx), fyy(m.fyy), fyz(m.fyz),
204 fzx(m.fzx), fzy(m.fzy), fzz(m.fzz) {}
205
206////////////////////////////////////////////////////////////////////////////////
207/// Constructor.
208
210 Double_t myx, Double_t myy, Double_t myz,
211 Double_t mzx, Double_t mzy, Double_t mzz)
212: fxx(mxx), fxy(mxy), fxz(mxz), fyx(myx), fyy(myy), fyz(myz),
213 fzx(mzx), fzy(mzy), fzz(mzz) {}
214
215////////////////////////////////////////////////////////////////////////////////
216/// Dereferencing operator const.
217
218Double_t TRotation::operator() (int i, int j) const {
219 if (i == 0) {
220 if (j == 0) { return fxx; }
221 if (j == 1) { return fxy; }
222 if (j == 2) { return fxz; }
223 } else if (i == 1) {
224 if (j == 0) { return fyx; }
225 if (j == 1) { return fyy; }
226 if (j == 2) { return fyz; }
227 } else if (i == 2) {
228 if (j == 0) { return fzx; }
229 if (j == 1) { return fzy; }
230 if (j == 2) { return fzz; }
231 }
232
233 Warning("operator()(i,j)", "bad indices (%d , %d)",i,j);
234
235 return 0.0;
236}
237
238////////////////////////////////////////////////////////////////////////////////
239/// Multiplication operator.
240
242 return TRotation(fxx*b.fxx + fxy*b.fyx + fxz*b.fzx,
243 fxx*b.fxy + fxy*b.fyy + fxz*b.fzy,
244 fxx*b.fxz + fxy*b.fyz + fxz*b.fzz,
245 fyx*b.fxx + fyy*b.fyx + fyz*b.fzx,
246 fyx*b.fxy + fyy*b.fyy + fyz*b.fzy,
247 fyx*b.fxz + fyy*b.fyz + fyz*b.fzz,
248 fzx*b.fxx + fzy*b.fyx + fzz*b.fzx,
249 fzx*b.fxy + fzy*b.fyy + fzz*b.fzy,
250 fzx*b.fxz + fzy*b.fyz + fzz*b.fzz);
251}
252
253////////////////////////////////////////////////////////////////////////////////
254/// Constructor for a rotation based on a Quaternion
255/// if magnitude of quaternion is null, creates identity rotation
256/// if quaternion is non-unit, creates rotation corresponding to the normalized (unit) quaternion
257
259
260 double two_r2 = 2 * Q.fRealPart * Q.fRealPart;
261 double two_x2 = 2 * Q.fVectorPart.X() * Q.fVectorPart.X();
262 double two_y2 = 2 * Q.fVectorPart.Y() * Q.fVectorPart.Y();
263 double two_z2 = 2 * Q.fVectorPart.Z() * Q.fVectorPart.Z();
264 double two_xy = 2 * Q.fVectorPart.X() * Q.fVectorPart.Y();
265 double two_xz = 2 * Q.fVectorPart.X() * Q.fVectorPart.Z();
266 double two_xr = 2 * Q.fVectorPart.X() * Q.fRealPart;
267 double two_yz = 2 * Q.fVectorPart.Y() * Q.fVectorPart.Z();
268 double two_yr = 2 * Q.fVectorPart.Y() * Q.fRealPart;
269 double two_zr = 2 * Q.fVectorPart.Z() * Q.fRealPart;
270
271 // protect agains zero quaternion
272 double mag2 = Q.QMag2();
273 if (mag2 > 0) {
274
275 // diago + identity
276 fxx = two_r2 + two_x2;
277 fyy = two_r2 + two_y2;
278 fzz = two_r2 + two_z2;
279
280 // line 0 column 1 and conjugate
281 fxy = two_xy - two_zr;
282 fyx = two_xy + two_zr;
283
284 // line 0 column 2 and conjugate
285 fxz = two_xz + two_yr;
286 fzx = two_xz - two_yr;
287
288 // line 1 column 2 and conjugate
289 fyz = two_yz - two_xr;
290 fzy = two_yz + two_xr;
291
292 // protect agains non-unit quaternion
293 if (TMath::Abs(mag2-1) > 1e-10) {
294 fxx /= mag2;
295 fyy /= mag2;
296 fzz /= mag2;
297 fxy /= mag2;
298 fyx /= mag2;
299 fxz /= mag2;
300 fzx /= mag2;
301 fyz /= mag2;
302 fzy /= mag2;
303 }
304
305 // diago : remove identity
306 fxx -= 1;
307 fyy -= 1;
308 fzz -= 1;
309
310
311 } else {
312 // Identity
313
314 fxx = fyy = fzz = 1;
315 fxy = fyx = fxz = fzx = fyz = fzy = 0;
316
317 }
318
319}
320
321////////////////////////////////////////////////////////////////////////////////
322/// Rotate along an axis.
323
325 if (a != 0.0) {
326 Double_t ll = axis.Mag();
327 if (ll == 0.0) {
328 Warning("Rotate(angle,axis)"," zero axis");
329 } else {
330 Double_t sa = TMath::Sin(a), ca = TMath::Cos(a);
331 Double_t dx = axis.X()/ll, dy = axis.Y()/ll, dz = axis.Z()/ll;
332 TRotation m(
333 ca+(1-ca)*dx*dx, (1-ca)*dx*dy-sa*dz, (1-ca)*dx*dz+sa*dy,
334 (1-ca)*dy*dx+sa*dz, ca+(1-ca)*dy*dy, (1-ca)*dy*dz-sa*dx,
335 (1-ca)*dz*dx-sa*dy, (1-ca)*dz*dy+sa*dx, ca+(1-ca)*dz*dz );
336 Transform(m);
337 }
338 }
339 return *this;
340}
341
342////////////////////////////////////////////////////////////////////////////////
343/// Rotate around x.
344
348 Double_t x = fyx, y = fyy, z = fyz;
349 fyx = c*x - s*fzx;
350 fyy = c*y - s*fzy;
351 fyz = c*z - s*fzz;
352 fzx = s*x + c*fzx;
353 fzy = s*y + c*fzy;
354 fzz = s*z + c*fzz;
355 return *this;
356}
357
358////////////////////////////////////////////////////////////////////////////////
359/// Rotate around y.
360
364 Double_t x = fzx, y = fzy, z = fzz;
365 fzx = c*x - s*fxx;
366 fzy = c*y - s*fxy;
367 fzz = c*z - s*fxz;
368 fxx = s*x + c*fxx;
369 fxy = s*y + c*fxy;
370 fxz = s*z + c*fxz;
371 return *this;
372}
373
374////////////////////////////////////////////////////////////////////////////////
375/// Rotate around z.
376
380 Double_t x = fxx, y = fxy, z = fxz;
381 fxx = c*x - s*fyx;
382 fxy = c*y - s*fyy;
383 fxz = c*z - s*fyz;
384 fyx = s*x + c*fyx;
385 fyy = s*y + c*fyy;
386 fyz = s*z + c*fyz;
387 return *this;
388}
389
390////////////////////////////////////////////////////////////////////////////////
391/// Rotate axes.
392
394 const TVector3 &newY,
395 const TVector3 &newZ) {
396 Double_t del = 0.001;
397 TVector3 w = newX.Cross(newY);
398
399 if (TMath::Abs(newZ.X()-w.X()) > del ||
400 TMath::Abs(newZ.Y()-w.Y()) > del ||
401 TMath::Abs(newZ.Z()-w.Z()) > del ||
402 TMath::Abs(newX.Mag2()-1.) > del ||
403 TMath::Abs(newY.Mag2()-1.) > del ||
404 TMath::Abs(newZ.Mag2()-1.) > del ||
405 TMath::Abs(newX.Dot(newY)) > del ||
406 TMath::Abs(newY.Dot(newZ)) > del ||
407 TMath::Abs(newZ.Dot(newX)) > del) {
408 Warning("RotateAxes","bad axis vectors");
409 return *this;
410 } else {
411 return Transform(TRotation(newX.X(), newY.X(), newZ.X(),
412 newX.Y(), newY.Y(), newZ.Y(),
413 newX.Z(), newY.Z(), newZ.Z()));
414 }
415}
416
417////////////////////////////////////////////////////////////////////////////////
418/// Return Phi.
419
421 return (fyx == 0.0 && fxx == 0.0) ? 0.0 : TMath::ATan2(fyx,fxx);
422}
423
424////////////////////////////////////////////////////////////////////////////////
425/// Return Phi.
426
428 return (fyy == 0.0 && fxy == 0.0) ? 0.0 : TMath::ATan2(fyy,fxy);
429}
430
431////////////////////////////////////////////////////////////////////////////////
432/// Return Phi.
433
435 return (fyz == 0.0 && fxz == 0.0) ? 0.0 : TMath::ATan2(fyz,fxz);
436}
437
438////////////////////////////////////////////////////////////////////////////////
439/// Return Theta.
440
442 return TMath::ACos(fzx);
443}
444
445////////////////////////////////////////////////////////////////////////////////
446/// Return Theta.
447
449 return TMath::ACos(fzy);
450}
451
452////////////////////////////////////////////////////////////////////////////////
453/// Return Theta.
454
456 return TMath::ACos(fzz);
457}
458
459////////////////////////////////////////////////////////////////////////////////
460/// Rotation defined by an angle and a vector.
461
462void TRotation::AngleAxis(Double_t &angle, TVector3 &axis) const {
463 Double_t cosa = 0.5*(fxx+fyy+fzz-1);
464 Double_t cosa1 = 1-cosa;
465 if (cosa1 <= 0) {
466 angle = 0;
467 axis = TVector3(0,0,1);
468 } else {
469 Double_t x=0, y=0, z=0;
470 if (fxx > cosa) x = TMath::Sqrt((fxx-cosa)/cosa1);
471 if (fyy > cosa) y = TMath::Sqrt((fyy-cosa)/cosa1);
472 if (fzz > cosa) z = TMath::Sqrt((fzz-cosa)/cosa1);
473 if (fzy < fyz) x = -x;
474 if (fxz < fzx) y = -y;
475 if (fyx < fxy) z = -z;
476 angle = TMath::ACos(cosa);
477 axis = TVector3(x,y,z);
478 }
479}
480
481////////////////////////////////////////////////////////////////////////////////
482/// Rotate using the x-convention (Landau and Lifshitz, Goldstein, &c) by
483/// doing the explicit rotations. This is slightly less efficient than
484/// directly applying the rotation, but makes the code much clearer. My
485/// presumption is that this code is not going to be a speed bottle neck.
486
488 Double_t theta,
489 Double_t psi) {
491 RotateZ(phi);
492 RotateX(theta);
493 RotateZ(psi);
494
495 return *this;
496}
497
498////////////////////////////////////////////////////////////////////////////////
499/// Rotate using the y-convention.
500
502 Double_t theta,
503 Double_t psi) {
505 RotateZ(phi);
506 RotateY(theta);
507 RotateZ(psi);
508 return *this;
509}
510
511////////////////////////////////////////////////////////////////////////////////
512/// Rotate using the x-convention.
513
515 Double_t theta,
516 Double_t psi) {
517 TRotation euler;
518 euler.SetXEulerAngles(phi,theta,psi);
519 return Transform(euler);
520}
521
522////////////////////////////////////////////////////////////////////////////////
523/// Rotate using the y-convention.
524
526 Double_t theta,
527 Double_t psi) {
528 TRotation euler;
529 euler.SetYEulerAngles(phi,theta,psi);
530 return Transform(euler);
531}
532
533////////////////////////////////////////////////////////////////////////////////
534/// Set XPhi.
535
538}
539
540////////////////////////////////////////////////////////////////////////////////
541/// Set XTheta.
542
545}
546
547////////////////////////////////////////////////////////////////////////////////
548/// Set XPsi.
549
552}
553
554////////////////////////////////////////////////////////////////////////////////
555/// Set YPhi.
556
559}
560
561////////////////////////////////////////////////////////////////////////////////
562/// Set YTheta.
563
566}
567
568////////////////////////////////////////////////////////////////////////////////
569/// Set YPsi.
570
573}
574
575////////////////////////////////////////////////////////////////////////////////
576/// Return phi angle.
577
579 Double_t finalPhi;
580
581 Double_t s2 = 1.0 - fzz*fzz;
582 if (s2 < 0) {
583 Warning("GetPhi()"," |fzz| > 1 ");
584 s2 = 0;
585 }
586 const Double_t sinTheta = TMath::Sqrt(s2);
587
588 if (sinTheta != 0) {
589 const Double_t cscTheta = 1/sinTheta;
590 Double_t cosAbsPhi = fzy * cscTheta;
591 if ( TMath::Abs(cosAbsPhi) > 1 ) { // NaN-proofing
592 Warning("GetPhi()","finds | cos phi | > 1");
593 cosAbsPhi = 1;
594 }
595 const Double_t absPhi = TMath::ACos(cosAbsPhi);
596 if (fzx > 0) {
597 finalPhi = absPhi;
598 } else if (fzx < 0) {
599 finalPhi = -absPhi;
600 } else if (fzy > 0) {
601 finalPhi = 0.0;
602 } else {
603 finalPhi = TMath::Pi();
604 }
605 } else { // sinTheta == 0 so |Fzz| = 1
606 const Double_t absPhi = .5 * TMath::ACos (fxx);
607 if (fxy > 0) {
608 finalPhi = -absPhi;
609 } else if (fxy < 0) {
610 finalPhi = absPhi;
611 } else if (fxx>0) {
612 finalPhi = 0.0;
613 } else {
614 finalPhi = fzz * TMath::PiOver2();
615 }
616 }
617 return finalPhi;
618}
619
620////////////////////////////////////////////////////////////////////////////////
621/// Return YPhi.
622
624 return GetXPhi() + TMath::Pi()/2.0;
625}
626
627////////////////////////////////////////////////////////////////////////////////
628/// Return XTheta.
629
631 return ThetaZ();
632}
633
634////////////////////////////////////////////////////////////////////////////////
635/// Return YTheta.
636
638 return ThetaZ();
639}
640
641////////////////////////////////////////////////////////////////////////////////
642/// Get psi angle.
643
645 double finalPsi = 0.0;
646
647 Double_t s2 = 1.0 - fzz*fzz;
648 if (s2 < 0) {
649 Warning("GetPsi()"," |fzz| > 1 ");
650 s2 = 0;
651 }
652 const Double_t sinTheta = TMath::Sqrt(s2);
653
654 if (sinTheta != 0) {
655 const Double_t cscTheta = 1/sinTheta;
656 Double_t cosAbsPsi = - fyz * cscTheta;
657 if ( TMath::Abs(cosAbsPsi) > 1 ) { // NaN-proofing
658 Warning("GetPsi()","| cos psi | > 1 ");
659 cosAbsPsi = 1;
660 }
661 const Double_t absPsi = TMath::ACos(cosAbsPsi);
662 if (fxz > 0) {
663 finalPsi = absPsi;
664 } else if (fxz < 0) {
665 finalPsi = -absPsi;
666 } else {
667 finalPsi = (fyz < 0) ? 0 : TMath::Pi();
668 }
669 } else { // sinTheta == 0 so |Fzz| = 1
670 Double_t absPsi = fxx;
671 if ( TMath::Abs(fxx) > 1 ) { // NaN-proofing
672 Warning("GetPsi()","| fxx | > 1 ");
673 absPsi = 1;
674 }
675 absPsi = .5 * TMath::ACos (absPsi);
676 if (fyx > 0) {
677 finalPsi = absPsi;
678 } else if (fyx < 0) {
679 finalPsi = -absPsi;
680 } else {
681 finalPsi = (fxx > 0) ? 0 : TMath::PiOver2();
682 }
683 }
684 return finalPsi;
685}
686
687////////////////////////////////////////////////////////////////////////////////
688/// Return YPsi.
689
691 return GetXPsi() - TMath::Pi()/2;
692}
693
694////////////////////////////////////////////////////////////////////////////////
695/// Set X axis.
696
698 const TVector3& xyPlane) {
699 TVector3 xAxis(xyPlane);
700 TVector3 yAxis;
701 TVector3 zAxis(axis);
702 MakeBasis(xAxis,yAxis,zAxis);
703 fxx = zAxis.X(); fyx = zAxis.Y(); fzx = zAxis.Z();
704 fxy = xAxis.X(); fyy = xAxis.Y(); fzy = xAxis.Z();
705 fxz = yAxis.X(); fyz = yAxis.Y(); fzz = yAxis.Z();
706 return *this;
707}
708
709////////////////////////////////////////////////////////////////////////////////
710/// Set X axis.
711
713 TVector3 xyPlane(0.0,1.0,0.0);
714 return SetXAxis(axis,xyPlane);
715}
716
717////////////////////////////////////////////////////////////////////////////////
718/// Set Y axis.
719
721 const TVector3& yzPlane) {
722 TVector3 xAxis(yzPlane);
723 TVector3 yAxis;
724 TVector3 zAxis(axis);
725 MakeBasis(xAxis,yAxis,zAxis);
726 fxx = yAxis.X(); fyx = yAxis.Y(); fzx = yAxis.Z();
727 fxy = zAxis.X(); fyy = zAxis.Y(); fzy = zAxis.Z();
728 fxz = xAxis.X(); fyz = xAxis.Y(); fzz = xAxis.Z();
729 return *this;
730}
731
732////////////////////////////////////////////////////////////////////////////////
733/// Set Y axis.
734
736 TVector3 yzPlane(0.0,0.0,1.0);
737 return SetYAxis(axis,yzPlane);
738}
739
740////////////////////////////////////////////////////////////////////////////////
741/// Set Z axis.
742
744 const TVector3& zxPlane) {
745 TVector3 xAxis(zxPlane);
746 TVector3 yAxis;
747 TVector3 zAxis(axis);
748 MakeBasis(xAxis,yAxis,zAxis);
749 fxx = xAxis.X(); fyx = xAxis.Y(); fzx = xAxis.Z();
750 fxy = yAxis.X(); fyy = yAxis.Y(); fzy = yAxis.Z();
751 fxz = zAxis.X(); fyz = zAxis.Y(); fzz = zAxis.Z();
752 return *this;
753}
754
755////////////////////////////////////////////////////////////////////////////////
756/// Set Z axis.
757
759 TVector3 zxPlane(1.0,0.0,0.0);
760 return SetZAxis(axis,zxPlane);
761}
762
763////////////////////////////////////////////////////////////////////////////////
764/// Make the Z axis into a unit variable.
765
767 TVector3& yAxis,
768 TVector3& zAxis) const {
769 Double_t zmag = zAxis.Mag();
770 if (zmag<TOLERANCE) {
771 Warning("MakeBasis(X,Y,Z)","non-zero Z Axis is required");
772 }
773 zAxis *= (1.0/zmag);
774
775 Double_t xmag = xAxis.Mag();
776 if (xmag<TOLERANCE*zmag) {
777 xAxis = zAxis.Orthogonal();
778 xmag = 1.0;
779 }
780
781 // Find the Y axis
782 yAxis = zAxis.Cross(xAxis)*(1.0/xmag);
783 Double_t ymag = yAxis.Mag();
784 if (ymag<TOLERANCE*zmag) {
785 yAxis = zAxis.Orthogonal();
786 } else {
787 yAxis *= (1.0/ymag);
788 }
789
790 xAxis = yAxis.Cross(zAxis);
791}
#define b(i)
Definition: RSha256.hxx:100
#define c(i)
Definition: RSha256.hxx:101
#define e(i)
Definition: RSha256.hxx:103
double Double_t
Definition: RtypesCore.h:57
#define ClassImp(name)
Definition: Rtypes.h:361
#define TOLERANCE
Definition: TRotation.cxx:190
Mother of all ROOT objects.
Definition: TObject.h:37
virtual void Warning(const char *method, const char *msgfmt,...) const
Issue warning message.
Definition: TObject.cxx:877
Quaternion is a 4-component mathematic object quite convenient when dealing with space rotation (or r...
Definition: TQuaternion.h:11
The TRotation class describes a rotation of objects of the TVector3 class.
Definition: TRotation.h:20
Double_t fzz
Definition: TRotation.h:182
Double_t fyy
Definition: TRotation.h:182
TRotation & SetToIdentity()
Definition: TRotation.h:251
TRotation & SetZAxis(const TVector3 &axis)
Set Z axis.
Definition: TRotation.cxx:758
Double_t PhiY() const
Return Phi.
Definition: TRotation.cxx:427
TRotation & Rotate(Double_t, const TVector3 &)
Rotate along an axis.
Definition: TRotation.cxx:324
Double_t fzy
Definition: TRotation.h:182
void SetXPhi(Double_t)
Set XPhi.
Definition: TRotation.cxx:536
Double_t GetYPhi(void) const
Return YPhi.
Definition: TRotation.cxx:623
TRotation()
Constructor.
Definition: TRotation.cxx:195
Double_t operator()(int, int) const
Dereferencing operator const.
Definition: TRotation.cxx:218
Double_t ThetaY() const
Return Theta.
Definition: TRotation.cxx:448
TRotation & RotateYEulerAngles(Double_t phi, Double_t theta, Double_t psi)
Rotate using the y-convention.
Definition: TRotation.cxx:525
void SetYPhi(Double_t)
Set YPhi.
Definition: TRotation.cxx:557
TRotation & SetYAxis(const TVector3 &axis)
Set Y axis.
Definition: TRotation.cxx:735
Double_t fyx
Definition: TRotation.h:182
Double_t GetXPsi(void) const
Get psi angle.
Definition: TRotation.cxx:644
void SetXPsi(Double_t)
Set XPsi.
Definition: TRotation.cxx:550
Double_t PhiX() const
Return Phi.
Definition: TRotation.cxx:420
Double_t fxz
Definition: TRotation.h:182
TRotation & Transform(const TRotation &)
Definition: TRotation.h:267
TRotation & RotateY(Double_t)
Rotate around y.
Definition: TRotation.cxx:361
Double_t fyz
Definition: TRotation.h:182
Double_t PhiZ() const
Return Phi.
Definition: TRotation.cxx:434
TRotation & RotateZ(Double_t)
Rotate around z.
Definition: TRotation.cxx:377
TVector3 operator*(const TVector3 &) const
Definition: TRotation.h:257
Double_t GetYPsi(void) const
Return YPsi.
Definition: TRotation.cxx:690
Double_t GetYTheta(void) const
Return YTheta.
Definition: TRotation.cxx:637
TRotation & RotateXEulerAngles(Double_t phi, Double_t theta, Double_t psi)
Rotate using the x-convention.
Definition: TRotation.cxx:514
TRotation & SetXEulerAngles(Double_t phi, Double_t theta, Double_t psi)
Rotate using the x-convention (Landau and Lifshitz, Goldstein, &c) by doing the explicit rotations.
Definition: TRotation.cxx:487
void AngleAxis(Double_t &, TVector3 &) const
Rotation defined by an angle and a vector.
Definition: TRotation.cxx:462
Double_t ThetaZ() const
Return Theta.
Definition: TRotation.cxx:455
void SetYPsi(Double_t)
Set YPsi.
Definition: TRotation.cxx:571
void SetYTheta(Double_t)
Set YTheta.
Definition: TRotation.cxx:564
Double_t fxx
Definition: TRotation.h:182
TRotation & SetYEulerAngles(Double_t phi, Double_t theta, Double_t psi)
Rotate using the y-convention.
Definition: TRotation.cxx:501
void MakeBasis(TVector3 &xAxis, TVector3 &yAxis, TVector3 &zAxis) const
Make the Z axis into a unit variable.
Definition: TRotation.cxx:766
TRotation & RotateAxes(const TVector3 &newX, const TVector3 &newY, const TVector3 &newZ)
Rotate axes.
Definition: TRotation.cxx:393
void SetXTheta(Double_t)
Set XTheta.
Definition: TRotation.cxx:543
Double_t GetXPhi(void) const
Return phi angle.
Definition: TRotation.cxx:578
TRotation & SetXAxis(const TVector3 &axis)
Set X axis.
Definition: TRotation.cxx:712
Double_t GetXTheta(void) const
Return XTheta.
Definition: TRotation.cxx:630
Double_t fzx
Definition: TRotation.h:182
Double_t ThetaX() const
Return Theta.
Definition: TRotation.cxx:441
Double_t fxy
Definition: TRotation.h:182
TRotation & RotateX(Double_t)
Rotate around x.
Definition: TRotation.cxx:345
TVector3 is a general three vector class, which can be used for the description of different vectors ...
Definition: TVector3.h:22
Double_t Z() const
Definition: TVector3.h:218
Double_t Y() const
Definition: TVector3.h:217
Double_t Dot(const TVector3 &) const
Definition: TVector3.h:331
Double_t Mag2() const
Definition: TVector3.h:339
Double_t X() const
Definition: TVector3.h:216
TVector3 Orthogonal() const
Definition: TVector3.h:342
Double_t Mag() const
Definition: TVector3.h:86
TVector3 Cross(const TVector3 &) const
Definition: TVector3.h:335
Double_t y[n]
Definition: legend1.C:17
Double_t x[n]
Definition: legend1.C:17
static double Q[]
static constexpr double s
Double_t ACos(Double_t)
Definition: TMath.h:658
constexpr Double_t PiOver2()
Definition: TMath.h:52
Double_t ATan2(Double_t y, Double_t x)
Definition: TMath.h:669
Double_t Sqrt(Double_t x)
Definition: TMath.h:681
Double_t Cos(Double_t)
Definition: TMath.h:631
constexpr Double_t Pi()
Definition: TMath.h:38
Double_t Sin(Double_t)
Definition: TMath.h:627
Short_t Abs(Short_t d)
Definition: TMathBase.h:120
auto * m
Definition: textangle.C:8
auto * a
Definition: textangle.C:12