60 if (fLinksIn != NULL)
delete fLinksIn;
61 if (fLinksOut != NULL)
delete fLinksOut;
78 fInputCalculator = NULL;
95 if (fForcedValue)
return;
96 fValue = fInputCalculator->GetInput(
this);
104 if (fActivation == NULL) {
105 PrintMessage( kWARNING ,
"No activation equation specified." );
109 fActivationValue = fActivation->Eval(fValue);
118 if (IsInputNeuron()) {
126 if (IsOutputNeuron()) error = fError;
139 if (synapse == NULL)
break;
145 fDelta = error * fActivation->EvalDerivative(GetValue());
153 if (fInputCalculator != NULL)
delete fInputCalculator;
154 fInputCalculator = calculator;
162 if (fActivation != NULL)
delete fActivation;
163 fActivation = activation;
171 if (IsInputNeuron())
return;
180 if (IsOutputNeuron())
return;
181 fLinksOut->Add(post);
189 DeleteLinksArray(fLinksIn);
197 if (links == NULL)
return;
201 for (
Int_t i=0; i<numLinks; i++) {
203 if (synapse != NULL)
delete synapse;
214 if (!IsOutputNeuron())
215 PrintMessage( kWARNING,
"Warning! Setting an error on a non-output neuron is probably not what you want to do." );
226 if (IsInputNeuron())
return;
232 if (synapse == NULL)
break;
244 if (IsInputNeuron())
return;
251 if (synapse == NULL)
break;
265 if (IsInputNeuron())
return;
273 if (synapse == NULL)
break;
286 if (IsInputNeuron())
return;
294 if (synapse == NULL)
break;
306 Log() << kDEBUG <<
"\t\t\t<none>" <<
Endl;
313 for (
Int_t i = 0; i < numLinks; i++) {
316 "\t\t\tweighta: " << synapse->
GetWeight()
329 if (fActivation != NULL)
Log() << kDEBUG << fActivation->GetExpression() <<
Endl;
330 else Log() << kDEBUG <<
"<none>" <<
Endl;
345 TTHREAD_TLS_DECL_ARG2(
MsgLogger,logger,
"TNeuron",kDEBUG);
ostringstream derivative to redirect and format output
Interface for TNeuron activation function classes.
Neuron class used by TMVA artificial neural network methods.
void AdjustSynapseWeights()
adjust the pre-synapses' weights for each neuron (input neuron has no pre-synapse) this method should...
void ForceValue(Double_t value)
force the value, typically for input and bias neurons
TNeuron()
standard constructor
void UpdateSynapsesSequential()
update the pre-synapses for each neuron (input neuron has no pre-synapse) this method should only be ...
void PrintMessage(EMsgType, TString message)
print message, for debugging
void SetActivationEqn(TActivation *activation)
set activation equation
void InitNeuron()
initialize the neuron, most variables still need to be set via setters
void AddPostLink(TSynapse *post)
add synapse as a post-link to this neuron
void SetInputCalculator(TNeuronInput *calculator)
set input calculator
void PrintActivationEqn()
print activation equation, for debugging
void SetError(Double_t error)
set error, this should only be done for an output neuron
void CalculateValue()
calculate neuron input
void CalculateActivationValue()
calculate neuron activation/output
void UpdateSynapsesBatch()
update and adjust the pre-synapses for each neuron (input neuron has no pre-synapse) this method shou...
void DeleteLinksArray(TObjArray *&links)
delete an array of TSynapses
virtual ~TNeuron()
destructor
void AddPreLink(TSynapse *pre)
add synapse as a pre-link to this neuron
void DeletePreLinks()
delete all pre-links
void InitSynapseDeltas()
initialize the error fields of all pre-neurons this method should only be called in batch mode
void CalculateDelta()
calculate error field
void PrintLinks(TObjArray *links) const
print an array of TSynapses, for debugging
Synapse class used by TMVA artificial neural network methods.
Double_t GetWeightedValue()
get output of pre-neuron weighted by synapse weight
Double_t GetLearningRate()
Double_t GetWeightedDelta()
get error field of post-neuron weighted by synapse weight
void AdjustWeight()
adjust the weight based on the error field all ready calculated by CalculateDelta
void CalculateDelta()
calculate/adjust the error field for this synapse
Iterator of object array.
TObject * Next()
Return next object in array. Returns 0 when no more objects in array.
Int_t GetEntriesFast() const
TObject * At(Int_t idx) const
MsgLogger & Endl(MsgLogger &ml)
static const Int_t UNINITIALIZED