Logo ROOT  
Reference Guide
No Matches
HybridOriginalDemo.C File Reference

Detailed Description

View in nbviewer Open in SWAN Example on how to use the HybridCalculatorOriginal class

With this example, you should get: CL_sb = 0.130 and CL_b = 0.946 (if data had -2lnQ = -3.0742).

␛[1mRooFit v3.60 -- Developed by Wouter Verkerke and David Kirkby␛[0m
Copyright (C) 2000-2013 NIKHEF, University of California & Stanford University
All rights reserved, please read http://roofit.sourceforge.net/license.txt
Test statistics has been evaluated for data
HybridCalculatorOriginal: run 1000 toy-MC experiments
with test statistics index: 1
marginalize nuisance parameters
....... toy number 0 / 1000
....... toy number 500 / 1000
Completed HybridCalculatorOriginal example:
- -2lnQ = -5.97789
- CL_sb = 0.194
- CL_b = 0.04
- CL_s = 4.85
- significance of data = 1.75069
- mean significance of toys = 2.65207
#include "RooRandom.h"
#include "RooRealVar.h"
#include "RooGaussian.h"
#include "RooPolynomial.h"
#include "RooArgSet.h"
#include "RooAddPdf.h"
#include "RooDataSet.h"
#include "RooExtendPdf.h"
#include "RooConstVar.h"
void HybridOriginalDemo(int ntoys = 1000)
using namespace RooFit;
using namespace RooStats;
// set RooFit random seed
/// build the models for background and signal+background
RooRealVar x("x", "", -3, 3);
RooArgList observables(x); // variables to be generated
// gaussian signal
RooGaussian sig_pdf("sig_pdf", "", x, RooConst(0.0), RooConst(0.8));
RooRealVar sig_yield("sig_yield", "", 20, 0, 300);
// flat background (extended PDF)
RooPolynomial bkg_pdf("bkg_pdf", "", x, RooConst(0));
RooRealVar bkg_yield("bkg_yield", "", 40, 0, 300);
RooExtendPdf bkg_ext_pdf("bkg_ext_pdf", "", bkg_pdf, bkg_yield);
// bkg_yield.setConstant(kTRUE);
// total sig+bkg (extended PDF)
RooAddPdf tot_pdf("tot_pdf", "", RooArgList(sig_pdf, bkg_pdf), RooArgList(sig_yield, bkg_yield));
// build the prior PDF on the parameters to be integrated
// gaussian contraint on the background yield ( N_B = 40 +/- 10 ie. 25% )
RooGaussian bkg_yield_prior("bkg_yield_prior", "", bkg_yield, RooConst(bkg_yield.getVal()), RooConst(10.));
RooArgSet nuisance_parameters(bkg_yield); // variables to be integrated
/// generate a data sample
RooDataSet *data = tot_pdf.generate(observables, RooFit::Extended());
// run HybridCalculator on those inputs
// use interface from HypoTest calculator by default
HybridCalculatorOriginal myHybridCalc(*data, tot_pdf, bkg_ext_pdf, &nuisance_parameters, &bkg_yield_prior);
// here I use the default test statistics: 2*lnQ (optional)
// myHybridCalc.SetTestStatistic(3); // profile likelihood ratio
// for speed up generation (do binned data)
// calculate by running ntoys for the S+B and B hypothesis and retrieve the result
HybridResult *myHybridResult = myHybridCalc.GetHypoTest();
if (!myHybridResult) {
std::cerr << "\nError returned from Hypothesis test" << std::endl;
/// nice plot of the results
HybridPlot *myHybridPlot =
myHybridResult->GetPlot("myHybridPlot", "Plot of results with HybridCalculatorOriginal", 100);
/// recover and display the results
double clsb_data = myHybridResult->CLsplusb();
double clb_data = myHybridResult->CLb();
double cls_data = myHybridResult->CLs();
double data_significance = myHybridResult->Significance();
double min2lnQ_data = myHybridResult->GetTestStat_data();
/// compute the mean expected significance from toys
double mean_sb_toys_test_stat = myHybridPlot->GetSBmean();
double toys_significance = myHybridResult->Significance();
std::cout << "Completed HybridCalculatorOriginal example:\n";
std::cout << " - -2lnQ = " << min2lnQ_data << endl;
std::cout << " - CL_sb = " << clsb_data << std::endl;
std::cout << " - CL_b = " << clb_data << std::endl;
std::cout << " - CL_s = " << cls_data << std::endl;
std::cout << " - significance of data = " << data_significance << std::endl;
std::cout << " - mean significance of toys = " << toys_significance << std::endl;
const Bool_t kTRUE
Definition RtypesCore.h:91
RooAddPdf is an efficient implementation of a sum of PDFs of the form.
Definition RooAddPdf.h:32
RooArgList is a container object that can hold multiple RooAbsArg objects.
Definition RooArgList.h:21
RooArgSet is a container object that can hold multiple RooAbsArg objects.
Definition RooArgSet.h:29
RooDataSet is a container class to hold unbinned data.
Definition RooDataSet.h:33
RooExtendPdf is a wrapper around an existing PDF that adds a parameteric extended likelihood term to ...
Plain Gaussian p.d.f.
Definition RooGaussian.h:24
RooPolynomial implements a polynomial p.d.f of the form.
static TRandom * randomGenerator()
Return a pointer to a singleton random-number generator implementation.
Definition RooRandom.cxx:53
RooRealVar represents a variable that can be changed from the outside.
Definition RooRealVar.h:39
HybridCalculatorOriginal class.
This class provides the plots for the result of a study performed with the HybridCalculatorOriginal c...
Definition HybridPlot.h:36
double GetSBmean()
Get SB histo mean.
Definition HybridPlot.h:77
void Draw(const char *options="")
Draw on current pad.
Class encapsulating the result of the HybridCalculatorOriginal.
double GetTestStat_data()
Get test statistics value for data.
HybridPlot * GetPlot(const char *name, const char *title, int n_bins)
prepare a plot showing a result and return a pointer to a HybridPlot object the needed arguments are:...
void SetDataTestStatistics(double testStat_data_val)
set the value of the test statistics on data
virtual Double_t CLb() const
Convert NullPValue into a "confidence level".
virtual Double_t CLsplusb() const
Convert AlternatePValue into a "confidence level".
virtual Double_t Significance() const
familiar name for the Null p-value in terms of 1-sided Gaussian significance
virtual Double_t CLs() const
is simply (not a method, but a quantity)
virtual void SetSeed(ULong_t seed=0)
Set the random generator seed.
Definition TRandom.cxx:608
RooCmdArg Extended(Bool_t flag=kTRUE)
Double_t x[n]
Definition legend1.C:17
The namespace RooFit contains mostly switches that change the behaviour of functions of PDFs (or othe...
Namespace for the RooStats classes.
Definition Asimov.h:19
Gregory Schott

Definition in file HybridOriginalDemo.C.