26#ifndef ROOT_TMVA_MethodKNN
27#define ROOT_TMVA_MethodKNN
60 const TString& theOption =
"KNN");
111 const std::vector<Double_t>
getRMS(
const kNN::List &rlist,
const kNN::Event &event_knn)
const;
#define ClassDef(name, id)
A ROOT file is a suite of consecutive data records (TKey instances) with a well defined format.
Class that contains all the data information.
Virtual base Class for all MVA method.
virtual void ReadWeightsFromStream(std::istream &)=0
Analysis of k-nearest neighbor.
void Init(void)
Initialization.
void MakeKNN(void)
create kNN
virtual ~MethodKNN(void)
destructor
virtual Bool_t HasAnalysisType(Types::EAnalysisType type, UInt_t numberClasses, UInt_t numberTargets)
FDA can handle classification with 2 classes and regression with one regression-target.
const std::vector< Double_t > getRMS(const kNN::List &rlist, const kNN::Event &event_knn) const
Get polynomial kernel radius.
const Ranking * CreateRanking()
no ranking available
Int_t fTreeOptDepth
Experimental feature for local knn analysis.
void MakeClassSpecific(std::ostream &, const TString &) const
write specific classifier response
void DeclareCompatibilityOptions()
options that are used ONLY for the READER to ensure backward compatibility
Double_t getKernelRadius(const kNN::List &rlist) const
Get polynomial kernel radius.
void GetHelpMessage() const
get help message text
const std::vector< Float_t > & GetRegressionValues()
Return vector of averages for target values of k-nearest neighbors.
void Train(void)
kNN training
void ReadWeightsFromStream(std::istream &istr)
read the weights
double getLDAValue(const kNN::List &rlist, const kNN::Event &event_knn)
Double_t PolnKernel(Double_t value) const
polynomial kernel
void ProcessOptions()
process the options specified by the user
void ReadWeightsFromXML(void *wghtnode)
void AddWeightsXMLTo(void *parent) const
write weights to XML
void DeclareOptions()
MethodKNN options.
void WriteWeightsToStream(TFile &rf) const
save weights to ROOT file
LDA fLDA
(untouched) events used for learning
Double_t GausKernel(const kNN::Event &event_knn, const kNN::Event &event, const std::vector< Double_t > &svec) const
Gaussian kernel.
Int_t fnkNN
module where all work is done
Double_t GetMvaValue(Double_t *err=0, Double_t *errUpper=0)
Compute classifier response.
Ranking for variables in method (implementation)
create variable transformations