35      if (z == 0) 
return std::numeric_limits<double>::infinity();
 
   36      if (z == 1) 
return - std::numeric_limits<double>::infinity();
 
   39         return  b / std::tan( 
M_PI * z );
 
   41         return  b * std::tan( 
M_PI * (0.5 -  z ) );
 
   48      if (z == 0) 
return - std::numeric_limits<double>::infinity();
 
   49      if (z == 1) 
return + std::numeric_limits<double>::infinity();
 
   52         return  - 
b / std::tan( 
M_PI * z );
 
   54         return  b * std::tan( 
M_PI * ( z -  0.5 ) );
 
   76      return - std::log(z)/ lambda;
 
   94         return m/(
n * 
y) - 
m/
n;
 
   99         return  m * 
y /(
n * ( 1. - 
y) );
 
  105      if (
n == 0) 
return 0;  
 
  108      return  m * 
y /(
n * ( 1. - 
y) );
 
  177      return a * z  + 
b * (1.0 - z);
 
  185      return b * z + 
a * (1.0 - z);
 
  195      static double f[982] = {
 
  196          0       , 0       , 0       ,0        ,0        ,-2.244733,
 
  197         -2.204365,-2.168163,-2.135219,-2.104898,-2.076740,-2.050397,
 
  198         -2.025605,-2.002150,-1.979866,-1.958612,-1.938275,-1.918760,
 
  199         -1.899984,-1.881879,-1.864385,-1.847451,-1.831030,-1.815083,
 
  200         -1.799574,-1.784473,-1.769751,-1.755383,-1.741346,-1.727620,
 
  201         -1.714187,-1.701029,-1.688130,-1.675477,-1.663057,-1.650858,
 
  202         -1.638868,-1.627078,-1.615477,-1.604058,-1.592811,-1.581729,
 
  203         -1.570806,-1.560034,-1.549407,-1.538919,-1.528565,-1.518339,
 
  204         -1.508237,-1.498254,-1.488386,-1.478628,-1.468976,-1.459428,
 
  205         -1.449979,-1.440626,-1.431365,-1.422195,-1.413111,-1.404112,
 
  206         -1.395194,-1.386356,-1.377594,-1.368906,-1.360291,-1.351746,
 
  207         -1.343269,-1.334859,-1.326512,-1.318229,-1.310006,-1.301843,
 
  208         -1.293737,-1.285688,-1.277693,-1.269752,-1.261863,-1.254024,
 
  209         -1.246235,-1.238494,-1.230800,-1.223153,-1.215550,-1.207990,
 
  210         -1.200474,-1.192999,-1.185566,-1.178172,-1.170817,-1.163500,
 
  211         -1.156220,-1.148977,-1.141770,-1.134598,-1.127459,-1.120354,
 
  212         -1.113282,-1.106242,-1.099233,-1.092255,
 
  213         -1.085306,-1.078388,-1.071498,-1.064636,-1.057802,-1.050996,
 
  214         -1.044215,-1.037461,-1.030733,-1.024029,-1.017350,-1.010695,
 
  215         -1.004064, -.997456, -.990871, -.984308, -.977767, -.971247,
 
  216          -.964749, -.958271, -.951813, -.945375, -.938957, -.932558,
 
  217          -.926178, -.919816, -.913472, -.907146, -.900838, -.894547,
 
  218          -.888272, -.882014, -.875773, -.869547, -.863337, -.857142,
 
  219          -.850963, -.844798, -.838648, -.832512, -.826390, -.820282,
 
  220          -.814187, -.808106, -.802038, -.795982, -.789940, -.783909,
 
  221          -.777891, -.771884, -.765889, -.759906, -.753934, -.747973,
 
  222          -.742023, -.736084, -.730155, -.724237, -.718328, -.712429,
 
  223          -.706541, -.700661, -.694791, -.688931, -.683079, -.677236,
 
  224          -.671402, -.665576, -.659759, -.653950, -.648149, -.642356,
 
  225          -.636570, -.630793, -.625022, -.619259, -.613503, -.607754,
 
  226          -.602012, -.596276, -.590548, -.584825, -.579109, -.573399,
 
  227          -.567695, -.561997, -.556305, -.550618, -.544937, -.539262,
 
  228          -.533592, -.527926, -.522266, -.516611, -.510961, -.505315,
 
  229          -.499674, -.494037, -.488405, -.482777,
 
  230          -.477153, -.471533, -.465917, -.460305, -.454697, -.449092,
 
  231          -.443491, -.437893, -.432299, -.426707, -.421119, -.415534,
 
  232          -.409951, -.404372, -.398795, -.393221, -.387649, -.382080,
 
  233          -.376513, -.370949, -.365387, -.359826, -.354268, -.348712,
 
  234          -.343157, -.337604, -.332053, -.326503, -.320955, -.315408,
 
  235          -.309863, -.304318, -.298775, -.293233, -.287692, -.282152,
 
  236          -.276613, -.271074, -.265536, -.259999, -.254462, -.248926,
 
  237          -.243389, -.237854, -.232318, -.226783, -.221247, -.215712,
 
  238          -.210176, -.204641, -.199105, -.193568, -.188032, -.182495,
 
  239          -.176957, -.171419, -.165880, -.160341, -.154800, -.149259,
 
  240          -.143717, -.138173, -.132629, -.127083, -.121537, -.115989,
 
  241          -.110439, -.104889, -.099336, -.093782, -.088227, -.082670,
 
  242          -.077111, -.071550, -.065987, -.060423, -.054856, -.049288,
 
  243          -.043717, -.038144, -.032569, -.026991, -.021411, -.015828,
 
  244          -.010243, -.004656,  .000934,  .006527,  .012123,  .017722,
 
  245           .023323,  .028928,  .034535,  .040146,  .045759,  .051376,
 
  246           .056997,  .062620,  .068247,  .073877,
 
  247           .079511,  .085149,  .090790,  .096435,  .102083,  .107736,
 
  248           .113392,  .119052,  .124716,  .130385,  .136057,  .141734,
 
  249           .147414,  .153100,  .158789,  .164483,  .170181,  .175884,
 
  250           .181592,  .187304,  .193021,  .198743,  .204469,  .210201,
 
  251           .215937,  .221678,  .227425,  .233177,  .238933,  .244696,
 
  252           .250463,  .256236,  .262014,  .267798,  .273587,  .279382,
 
  253           .285183,  .290989,  .296801,  .302619,  .308443,  .314273,
 
  254           .320109,  .325951,  .331799,  .337654,  .343515,  .349382,
 
  255           .355255,  .361135,  .367022,  .372915,  .378815,  .384721,
 
  256           .390634,  .396554,  .402481,  .408415,  .414356,  .420304,
 
  257           .426260,  .432222,  .438192,  .444169,  .450153,  .456145,
 
  258           .462144,  .468151,  .474166,  .480188,  .486218,  .492256,
 
  259           .498302,  .504356,  .510418,  .516488,  .522566,  .528653,
 
  260           .534747,  .540850,  .546962,  .553082,  .559210,  .565347,
 
  261           .571493,  .577648,  .583811,  .589983,  .596164,  .602355,
 
  262           .608554,  .614762,  .620980,  .627207,  .633444,  .639689,
 
  263           .645945,  .652210,  .658484,  .664768,
 
  264           .671062,  .677366,  .683680,  .690004,  .696338,  .702682,
 
  265           .709036,  .715400,  .721775,  .728160,  .734556,  .740963,
 
  266           .747379,  .753807,  .760246,  .766695,  .773155,  .779627,
 
  267           .786109,  .792603,  .799107,  .805624,  .812151,  .818690,
 
  268           .825241,  .831803,  .838377,  .844962,  .851560,  .858170,
 
  269           .864791,  .871425,  .878071,  .884729,  .891399,  .898082,
 
  270           .904778,  .911486,  .918206,  .924940,  .931686,  .938446,
 
  271           .945218,  .952003,  .958802,  .965614,  .972439,  .979278,
 
  272           .986130,  .992996,  .999875, 1.006769, 1.013676, 1.020597,
 
  273          1.027533, 1.034482, 1.041446, 1.048424, 1.055417, 1.062424,
 
  274          1.069446, 1.076482, 1.083534, 1.090600, 1.097681, 1.104778,
 
  275          1.111889, 1.119016, 1.126159, 1.133316, 1.140490, 1.147679,
 
  276          1.154884, 1.162105, 1.169342, 1.176595, 1.183864, 1.191149,
 
  277          1.198451, 1.205770, 1.213105, 1.220457, 1.227826, 1.235211,
 
  278          1.242614, 1.250034, 1.257471, 1.264926, 1.272398, 1.279888,
 
  279          1.287395, 1.294921, 1.302464, 1.310026, 1.317605, 1.325203,
 
  280          1.332819, 1.340454, 1.348108, 1.355780,
 
  281          1.363472, 1.371182, 1.378912, 1.386660, 1.394429, 1.402216,
 
  282          1.410024, 1.417851, 1.425698, 1.433565, 1.441453, 1.449360,
 
  283          1.457288, 1.465237, 1.473206, 1.481196, 1.489208, 1.497240,
 
  284          1.505293, 1.513368, 1.521465, 1.529583, 1.537723, 1.545885,
 
  285          1.554068, 1.562275, 1.570503, 1.578754, 1.587028, 1.595325,
 
  286          1.603644, 1.611987, 1.620353, 1.628743, 1.637156, 1.645593,
 
  287          1.654053, 1.662538, 1.671047, 1.679581, 1.688139, 1.696721,
 
  288          1.705329, 1.713961, 1.722619, 1.731303, 1.740011, 1.748746,
 
  289          1.757506, 1.766293, 1.775106, 1.783945, 1.792810, 1.801703,
 
  290          1.810623, 1.819569, 1.828543, 1.837545, 1.846574, 1.855631,
 
  291          1.864717, 1.873830, 1.882972, 1.892143, 1.901343, 1.910572,
 
  292          1.919830, 1.929117, 1.938434, 1.947781, 1.957158, 1.966566,
 
  293          1.976004, 1.985473, 1.994972, 2.004503, 2.014065, 2.023659,
 
  294          2.033285, 2.042943, 2.052633, 2.062355, 2.072110, 2.081899,
 
  295          2.091720, 2.101575, 2.111464, 2.121386, 2.131343, 2.141334,
 
  296          2.151360, 2.161421, 2.171517, 2.181648, 2.191815, 2.202018,
 
  297          2.212257, 2.222533, 2.232845, 2.243195,
 
  298          2.253582, 2.264006, 2.274468, 2.284968, 2.295507, 2.306084,
 
  299          2.316701, 2.327356, 2.338051, 2.348786, 2.359562, 2.370377,
 
  300          2.381234, 2.392131, 2.403070, 2.414051, 2.425073, 2.436138,
 
  301          2.447246, 2.458397, 2.469591, 2.480828, 2.492110, 2.503436,
 
  302          2.514807, 2.526222, 2.537684, 2.549190, 2.560743, 2.572343,
 
  303          2.583989, 2.595682, 2.607423, 2.619212, 2.631050, 2.642936,
 
  304          2.654871, 2.666855, 2.678890, 2.690975, 2.703110, 2.715297,
 
  305          2.727535, 2.739825, 2.752168, 2.764563, 2.777012, 2.789514,
 
  306          2.802070, 2.814681, 2.827347, 2.840069, 2.852846, 2.865680,
 
  307          2.878570, 2.891518, 2.904524, 2.917588, 2.930712, 2.943894,
 
  308          2.957136, 2.970439, 2.983802, 2.997227, 3.010714, 3.024263,
 
  309          3.037875, 3.051551, 3.065290, 3.079095, 3.092965, 3.106900,
 
  310          3.120902, 3.134971, 3.149107, 3.163312, 3.177585, 3.191928,
 
  311          3.206340, 3.220824, 3.235378, 3.250005, 3.264704, 3.279477,
 
  312          3.294323, 3.309244, 3.324240, 3.339312, 3.354461, 3.369687,
 
  313          3.384992, 3.400375, 3.415838, 3.431381, 3.447005, 3.462711,
 
  314          3.478500, 3.494372, 3.510328, 3.526370,
 
  315          3.542497, 3.558711, 3.575012, 3.591402, 3.607881, 3.624450,
 
  316          3.641111, 3.657863, 3.674708, 3.691646, 3.708680, 3.725809,
 
  317          3.743034, 3.760357, 3.777779, 3.795300, 3.812921, 3.830645,
 
  318          3.848470, 3.866400, 3.884434, 3.902574, 3.920821, 3.939176,
 
  319          3.957640, 3.976215, 3.994901, 4.013699, 4.032612, 4.051639,
 
  320          4.070783, 4.090045, 4.109425, 4.128925, 4.148547, 4.168292,
 
  321          4.188160, 4.208154, 4.228275, 4.248524, 4.268903, 4.289413,
 
  322          4.310056, 4.330832, 4.351745, 4.372794, 4.393982, 4.415310,
 
  323          4.436781, 4.458395, 4.480154, 4.502060, 4.524114, 4.546319,
 
  324          4.568676, 4.591187, 4.613854, 4.636678, 4.659662, 4.682807,
 
  325          4.706116, 4.729590, 4.753231, 4.777041, 4.801024, 4.825179,
 
  326          4.849511, 4.874020, 4.898710, 4.923582, 4.948639, 4.973883,
 
  327          4.999316, 5.024942, 5.050761, 5.076778, 5.102993, 5.129411,
 
  328          5.156034, 5.182864, 5.209903, 5.237156, 5.264625, 5.292312,
 
  329          5.320220, 5.348354, 5.376714, 5.405306, 5.434131, 5.463193,
 
  330          5.492496, 5.522042, 5.551836, 5.581880, 5.612178, 5.642734,
 
  331          5.673552, 5.704634, 5.735986, 5.767610,
 
  332          5.799512, 5.831694, 5.864161, 5.896918, 5.929968, 5.963316,
 
  333          5.996967, 6.030925, 6.065194, 6.099780, 6.134687, 6.169921,
 
  334          6.205486, 6.241387, 6.277630, 6.314220, 6.351163, 6.388465,
 
  335          6.426130, 6.464166, 6.502578, 6.541371, 6.580553, 6.620130,
 
  336          6.660109, 6.700495, 6.741297, 6.782520, 6.824173, 6.866262,
 
  337          6.908795, 6.951780, 6.995225, 7.039137, 7.083525, 7.128398,
 
  338          7.173764, 7.219632, 7.266011, 7.312910, 7.360339, 7.408308,
 
  339          7.456827, 7.505905, 7.555554, 7.605785, 7.656608, 7.708035,
 
  340          7.760077, 7.812747, 7.866057, 7.920019, 7.974647, 8.029953,
 
  341          8.085952, 8.142657, 8.200083, 8.258245, 8.317158, 8.376837,
 
  342          8.437300, 8.498562, 8.560641, 8.623554, 8.687319, 8.751955,
 
  343          8.817481, 8.883916, 8.951282, 9.019600, 9.088889, 9.159174,
 
  344          9.230477, 9.302822, 9.376233, 9.450735, 9.526355, 9.603118,
 
  345          9.681054, 9.760191, 9.840558, 9.922186,10.005107,10.089353,
 
  346         10.174959,10.261958,10.350389,10.440287,10.531693,10.624646,
 
  347         10.719188,10.815362,10.913214,11.012789,11.114137,11.217307,
 
  348         11.322352,11.429325,11.538283,11.649285,
 
  349         11.762390,11.877664,11.995170,12.114979,12.237161,12.361791,
 
  350         12.488946,12.618708,12.751161,12.886394,13.024498,13.165570,
 
  351         13.309711,13.457026,13.607625,13.761625,13.919145,14.080314,
 
  352         14.245263,14.414134,14.587072,14.764233,14.945778,15.131877,
 
  353         15.322712,15.518470,15.719353,15.925570,16.137345,16.354912,
 
  354         16.578520,16.808433,17.044929,17.288305,17.538873,17.796967,
 
  355         18.062943,18.337176,18.620068,18.912049,19.213574,19.525133,
 
  356         19.847249,20.180480,20.525429,20.882738,21.253102,21.637266,
 
  357         22.036036,22.450278,22.880933,23.329017,23.795634,24.281981,
 
  358         24.789364,25.319207,25.873062,26.452634,27.059789,27.696581,
 
  359         28.365274,29.068370,29.808638,30.589157,31.413354,32.285060,
 
  360         33.208568,34.188705,35.230920,36.341388,37.527131,38.796172,
 
  361         40.157721,41.622399,43.202525,44.912465,46.769077,48.792279,
 
  362         51.005773,53.437996,56.123356,59.103894 };
 
  364      if (xi <= 0) 
return 0;
 
  365      if (z <= 0) 
return -std::numeric_limits<double>::infinity();
 
  366      if (z >= 1) 
return std::numeric_limits<double>::infinity();
 
  372      if (i >= 70 && i < 800) {
 
  373         ranlan = 
f[i-1] + u*(
f[i] - 
f[i-1]);
 
  374      } 
else if (i >= 7 && i <= 980) {
 
  375         ranlan =  
f[i-1] + u*(
f[i]-
f[i-1]-0.25*(1-u)*(
f[i+1]-
f[i]-
f[i-1]+
f[i-2]));
 
  379         ranlan = ((0.99858950+(3.45213058E1+1.70854528E1*u)*u)/
 
  380                   (1         +(3.41760202E1+4.01244582  *u)*u))*
 
  381                   (-std::log(-0.91893853-
v)-1);
 
  386            ranlan = (1.00060006+2.63991156E2*u+4.37320068E3*
v)/
 
  387                    ((1         +2.57368075E2*u+3.41448018E3*
v)*u);
 
  389            ranlan = (1.00001538+6.07514119E3*u+7.34266409E5*
v)/
 
  390                    ((1         +6.06511919E3*u+6.94021044E5*
v)*u);
 
double fdistribution_quantile_c(double z, double n, double m)
Inverse ( ) of the cumulative distribution function of the upper tail of the f distribution (fdistrib...
 
double uniform_quantile_c(double z, double a, double b)
Inverse ( ) of the cumulative distribution function of the upper tail of the uniform (flat) distribut...
 
double landau_quantile(double z, double xi=1)
Inverse ( ) of the cumulative distribution function of the lower tail of the Landau distribution (lan...
 
double chisquared_quantile_c(double z, double r)
Inverse ( ) of the cumulative distribution function of the upper tail of the  distribution with  degr...
 
double normal_quantile(double z, double sigma)
Inverse ( ) of the cumulative distribution function of the lower tail of the normal (Gaussian) distri...
 
double exponential_quantile_c(double z, double lambda)
Inverse ( ) of the cumulative distribution function of the upper tail of the exponential distribution...
 
double gamma_quantile_c(double z, double alpha, double theta)
Inverse ( ) of the cumulative distribution function of the upper tail of the gamma distribution (gamm...
 
double landau_quantile_c(double z, double xi=1)
Inverse ( ) of the cumulative distribution function of the upper tail of the landau distribution (lan...
 
double fdistribution_quantile(double z, double n, double m)
Inverse ( ) of the cumulative distribution function of the lower tail of the f distribution (fdistrib...
 
double cauchy_quantile_c(double z, double b)
Inverse ( ) of the cumulative distribution function of the upper tail of the Cauchy distribution (cau...
 
double uniform_quantile(double z, double a, double b)
Inverse ( ) of the cumulative distribution function of the lower tail of the uniform (flat) distribut...
 
double normal_quantile_c(double z, double sigma)
Inverse ( ) of the cumulative distribution function of the upper tail of the normal (Gaussian) distri...
 
double chisquared_quantile(double z, double r)
Inverse ( ) of the cumulative distribution function of the lower tail of the  distribution with  degr...
 
double beta_quantile_c(double x, double a, double b)
Inverse ( ) of the cumulative distribution function of the lower tail of the beta distribution (beta_...
 
double gamma_quantile(double z, double alpha, double theta)
Inverse ( ) of the cumulative distribution function of the lower tail of the gamma distribution (gamm...
 
double exponential_quantile(double z, double lambda)
Inverse ( ) of the cumulative distribution function of the lower tail of the exponential distribution...
 
double lognormal_quantile(double x, double m, double s)
Inverse ( ) of the cumulative distribution function of the lower tail of the lognormal distribution (...
 
double cauchy_quantile(double z, double b)
Inverse ( ) of the cumulative distribution function of the lower tail of the Cauchy distribution (cau...
 
double beta_quantile(double x, double a, double b)
Inverse ( ) of the cumulative distribution function of the upper tail of the beta distribution (beta_...
 
double lognormal_quantile_c(double x, double m, double s)
Inverse ( ) of the cumulative distribution function of the upper tail of the lognormal distribution (...
 
Namespace for new Math classes and functions.
 
double igami(double a, double y)
 
double incbi(double a, double b, double y)
 
double log1p(double x)
declarations for functions which are not implemented by some compilers
 
tbb::task_arena is an alias of tbb::interface7::task_arena, which doesn't allow to forward declare tb...