Logo ROOT  
Reference Guide
 
Loading...
Searching...
No Matches
RooAbsOptTestStatistic.cxx
Go to the documentation of this file.
1/*****************************************************************************
2 * Project: RooFit *
3 * Package: RooFitCore *
4 * @(#)root/roofitcore:$Id$
5 * Authors: *
6 * WV, Wouter Verkerke, UC Santa Barbara, verkerke@slac.stanford.edu *
7 * DK, David Kirkby, UC Irvine, dkirkby@uci.edu *
8 * *
9 * Copyright (c) 2000-2005, Regents of the University of California *
10 * and Stanford University. All rights reserved. *
11 * *
12 * Redistribution and use in source and binary forms, *
13 * with or without modification, are permitted according to the terms *
14 * listed in LICENSE (http://roofit.sourceforge.net/license.txt) *
15 *****************************************************************************/
16
17/**
18\file RooAbsOptTestStatistic.cxx
19\class RooAbsOptTestStatistic
20\ingroup Roofitcore
21
22RooAbsOptTestStatistic is the abstract base class for test
23statistics objects that evaluate a function or PDF at each point of a given
24dataset. This class provides generic optimizations, such as
25caching and precalculation of constant terms that can be made for
26all such quantities.
27
28Implementations should define evaluatePartition(), which calculates the
29value of a (sub)range of the dataset and optionally combinedValue(),
30which combines the values calculated for each partition. If combinedValue()
31is not overloaded, the default implementation will add the partition results
32to obtain the combined result.
33
34Support for calculation in partitions is needed to allow multi-core
35parallelized calculation of test statistics.
36**/
37
38#include "RooFit.h"
39
40#include "Riostream.h"
41#include <string.h>
42
43
45#include "RooMsgService.h"
46#include "RooAbsPdf.h"
47#include "RooAbsData.h"
48#include "RooDataHist.h"
49#include "RooArgSet.h"
50#include "RooRealVar.h"
51#include "RooErrorHandler.h"
52#include "RooGlobalFunc.h"
53#include "RooBinning.h"
54#include "RooAbsDataStore.h"
55#include "RooCategory.h"
56#include "RooDataSet.h"
57#include "RooProdPdf.h"
58#include "RooAddPdf.h"
59#include "RooProduct.h"
60#include "RooRealSumPdf.h"
61#include "RooTrace.h"
62#include "RooVectorDataStore.h"
63#include "RooBinSamplingPdf.h"
64
65using namespace std;
66
68;
69
70
71////////////////////////////////////////////////////////////////////////////////
72/// Default Constructor
73
75{
76 // Initialize all non-persisted data members
77
78 _funcObsSet = 0 ;
79 _funcCloneSet = 0 ;
80 _funcClone = 0 ;
81
82 _normSet = 0 ;
83 _projDeps = 0 ;
84
85 _origFunc = 0 ;
86 _origData = 0 ;
87
88 _ownData = kTRUE ;
89 _sealed = kFALSE ;
91}
92
93
94
95////////////////////////////////////////////////////////////////////////////////
96/// Create a test statistic, and optimise its calculation.
97/// \param[in] name Name of the instance.
98/// \param[in] title Title (for e.g. plotting).
99/// \param[in] real Function to evaluate.
100/// \param[in] indata Dataset for which to compute test statistic.
101/// \param[in] projDeps A set of projected observables.
102/// \param[in] rangeName If not null, only events in the dataset inside the range will be used in the test
103/// statistic calculation.
104/// \param[in] addCoefRangeName If not null, all RooAddPdf components of `real` will be
105/// instructed to fix their fraction definitions to the given named range.
106/// \param[in] nCPU If > 1, the test statistic calculation will be parallelised over multiple processes. By default, the data
107/// is split with 'bulk' partitioning (each process calculates a contiguous block of fraction 1/nCPU
108/// of the data). For binned data, this approach may be suboptimal as the number of bins with >0 entries
109/// in each processing block may vary greatly; thereby distributing the workload rather unevenly.
110/// \param[in] interleave Strategy how to distribute events among workers. If an interleave partitioning strategy is used where each partition
111/// i takes all bins for which (ibin % ncpu == i), an even distribution of work is more likely.
112/// \param[in] splitCutRange If true, a different rangeName constructed as `rangeName_{catName}` will be used
113/// as range definition for each index state of a RooSimultaneous.
114/// \param[in] cloneInputData Not used. Data is always cloned.
115/// \param[in] integrateOverBinsPrecision If > 0, PDF in binned fits are integrated over the bins. This sets the precision. If = 0,
116/// only unbinned PDFs fit to RooDataHist are integrated. If < 0, PDFs are never integrated.
117RooAbsOptTestStatistic::RooAbsOptTestStatistic(const char *name, const char *title, RooAbsReal& real, RooAbsData& indata,
118 const RooArgSet& projDeps, const char* rangeName, const char* addCoefRangeName,
119 Int_t nCPU, RooFit::MPSplit interleave, Bool_t verbose, Bool_t splitCutRange, Bool_t /*cloneInputData*/,
120 double integrateOverBinsPrecision) :
121 RooAbsTestStatistic(name,title,real,indata,projDeps,rangeName, addCoefRangeName, nCPU, interleave, verbose, splitCutRange),
122 _projDeps(0),
123 _sealed(kFALSE),
124 _optimized(kFALSE),
125 _integrateBinsPrecision(integrateOverBinsPrecision)
126{
127 // Don't do a thing in master mode
128
129 if (operMode()!=Slave) {
130 _funcObsSet = 0 ;
131 _funcCloneSet = 0 ;
132 _funcClone = 0 ;
133 _normSet = 0 ;
134 _projDeps = 0 ;
135 _origFunc = 0 ;
136 _origData = 0 ;
137 _ownData = kFALSE ;
138 _sealed = kFALSE ;
139 return ;
140 }
141
142 _origFunc = 0 ; //other._origFunc ;
143 _origData = 0 ; // other._origData ;
144
145 initSlave(real,indata,projDeps,rangeName,addCoefRangeName) ;
146}
147
148////////////////////////////////////////////////////////////////////////////////
149/// Copy constructor
150
152 RooAbsTestStatistic(other,name), _sealed(other._sealed), _sealNotice(other._sealNotice), _optimized(kFALSE),
153 _integrateBinsPrecision(other._integrateBinsPrecision)
154{
155 // Don't do a thing in master mode
156 if (operMode()!=Slave) {
157
158 _funcObsSet = 0 ;
159 _funcCloneSet = 0 ;
160 _funcClone = 0 ;
161 _normSet = other._normSet ? ((RooArgSet*) other._normSet->snapshot()) : 0 ;
162 _projDeps = 0 ;
163 _origFunc = 0 ;
164 _origData = 0 ;
165 _ownData = kFALSE ;
166 return ;
167 }
168
169 _origFunc = 0 ; //other._origFunc ;
170 _origData = 0 ; // other._origData ;
171 _projDeps = 0 ;
172
173 initSlave(*other._funcClone,*other._dataClone,other._projDeps?*other._projDeps:RooArgSet(),other._rangeName.c_str(),other._addCoefRangeName.c_str()) ;
174}
175
176
177
178////////////////////////////////////////////////////////////////////////////////
179
180void RooAbsOptTestStatistic::initSlave(RooAbsReal& real, RooAbsData& indata, const RooArgSet& projDeps, const char* rangeName,
181 const char* addCoefRangeName) {
182 // ******************************************************************
183 // *** PART 1 *** Clone incoming pdf, attach to each other *
184 // ******************************************************************
185
186 // Clone FUNC
187 _funcClone = static_cast<RooAbsReal*>(real.cloneTree());
188 _funcCloneSet = 0 ;
189
190 // Attach FUNC to data set
192
193 if (_funcClone->getAttribute("BinnedLikelihood")) {
194 _funcClone->setAttribute("BinnedLikelihoodActive") ;
195 }
196
197 // Reattach FUNC to original parameters
198 RooArgSet* origParams = (RooArgSet*) real.getParameters(indata) ;
200
201 // Mark all projected dependents as such
202 if (projDeps.getSize()>0) {
203 RooArgSet *projDataDeps = (RooArgSet*) _funcObsSet->selectCommon(projDeps) ;
204 projDataDeps->setAttribAll("projectedDependent") ;
205 delete projDataDeps ;
206 }
207
208 // If PDF is a RooProdPdf (with possible constraint terms)
209 // analyze pdf for actual parameters (i.e those in unconnected constraint terms should be
210 // ignored as here so that the test statistic will not be recalculated if those
211 // are changed
212 RooProdPdf* pdfWithCons = dynamic_cast<RooProdPdf*>(_funcClone) ;
213 if (pdfWithCons) {
214
215 RooArgSet* connPars = pdfWithCons->getConnectedParameters(*indata.get()) ;
216 // Add connected parameters as servers
218 _paramSet.add(*connPars) ;
219 delete connPars ;
220
221 } else {
222 // Add parameters as servers
223 _paramSet.add(*origParams) ;
224 }
225
226
227 delete origParams ;
228
229 // Store normalization set
230 _normSet = (RooArgSet*) indata.get()->snapshot(kFALSE) ;
231
232 // Expand list of observables with any observables used in parameterized ranges.
233 // This NEEDS to be a counting loop since we are inserting during the loop.
234 for (std::size_t i = 0; i < _funcObsSet->size(); ++i) {
235 auto realDepRLV = dynamic_cast<const RooAbsRealLValue*>((*_funcObsSet)[i]);
236 if (realDepRLV && realDepRLV->isDerived()) {
237 RooArgSet tmp2;
238 realDepRLV->leafNodeServerList(&tmp2, 0, kTRUE);
239 _funcObsSet->add(tmp2,kTRUE);
240 }
241 }
242
243
244
245 // ******************************************************************
246 // *** PART 2 *** Clone and adjust incoming data, attach to PDF *
247 // ******************************************************************
248
249 // Check if the fit ranges of the dependents in the data and in the FUNC are consistent
250 const RooArgSet* dataDepSet = indata.get() ;
251 for (const auto arg : *_funcObsSet) {
252
253 // Check that both dataset and function argument are of type RooRealVar
254 RooRealVar* realReal = dynamic_cast<RooRealVar*>(arg) ;
255 if (!realReal) continue ;
256 RooRealVar* datReal = dynamic_cast<RooRealVar*>(dataDepSet->find(realReal->GetName())) ;
257 if (!datReal) continue ;
258
259 // Check that range of observables in pdf is equal or contained in range of observables in data
260
261 if (!realReal->getBinning().lowBoundFunc() && realReal->getMin()<(datReal->getMin()-1e-6)) {
262 coutE(InputArguments) << "RooAbsOptTestStatistic: ERROR minimum of FUNC observable " << arg->GetName()
263 << "(" << realReal->getMin() << ") is smaller than that of "
264 << arg->GetName() << " in the dataset (" << datReal->getMin() << ")" << endl ;
266 return ;
267 }
268
269 if (!realReal->getBinning().highBoundFunc() && realReal->getMax()>(datReal->getMax()+1e-6)) {
270 coutE(InputArguments) << "RooAbsOptTestStatistic: ERROR maximum of FUNC observable " << arg->GetName()
271 << " is larger than that of " << arg->GetName() << " in the dataset" << endl ;
273 return ;
274 }
275 }
276
277 // Copy data and strip entries lost by adjusted fit range, _dataClone ranges will be copied from realDepSet ranges
278 if (rangeName && strlen(rangeName)) {
280 // cout << "RooAbsOptTestStatistic: reducing dataset to fit in range named " << rangeName << " resulting dataset has " << _dataClone->sumEntries() << " events" << endl ;
281 } else {
282 _dataClone = (RooAbsData*) indata.Clone() ;
283 }
284 _ownData = kTRUE ;
285
286
287 // ******************************************************************
288 // *** PART 3 *** Make adjustments for fit ranges, if specified *
289 // ******************************************************************
290
291 std::unique_ptr<RooArgSet> origObsSet( real.getObservables(indata) );
292 RooArgSet* dataObsSet = (RooArgSet*) _dataClone->get() ;
293 if (rangeName && strlen(rangeName)) {
294 cxcoutI(Fitting) << "RooAbsOptTestStatistic::ctor(" << GetName() << ") constructing test statistic for sub-range named " << rangeName << endl ;
295
296 bool observablesKnowRange = false;
297 // Adjust FUNC normalization ranges to requested fitRange, store original ranges for RooAddPdf coefficient interpretation
298 for (const auto arg : *_funcObsSet) {
299
300 RooRealVar* realObs = dynamic_cast<RooRealVar*>(arg) ;
301 if (realObs) {
302
303 observablesKnowRange |= realObs->hasRange(rangeName);
304
305 // If no explicit range is given for RooAddPdf coefficients, create explicit named range equivalent to original observables range
306 if (!(addCoefRangeName && strlen(addCoefRangeName))) {
307 realObs->setRange(Form("NormalizationRangeFor%s",rangeName),realObs->getMin(),realObs->getMax()) ;
308 }
309
310 // Adjust range of function observable to those of given named range
311 realObs->setRange(realObs->getMin(rangeName),realObs->getMax(rangeName)) ;
312
313 // Adjust range of data observable to those of given named range
314 RooRealVar* dataObs = (RooRealVar*) dataObsSet->find(realObs->GetName()) ;
315 dataObs->setRange(realObs->getMin(rangeName),realObs->getMax(rangeName)) ;
316
317 // Keep track of list of fit ranges in string attribute fit range of original p.d.f.
318 if (!_splitRange) {
319 const std::string fitRangeName = std::string("fit_") + GetName();
320 const char* origAttrib = real.getStringAttribute("fitrange") ;
321 std::string newAttr = origAttrib ? origAttrib : "";
322
323 if (newAttr.find(fitRangeName) == std::string::npos) {
324 newAttr += (newAttr.empty() ? "" : ",") + fitRangeName;
325 }
326 real.setStringAttribute("fitrange", newAttr.c_str());
327 RooRealVar* origObs = (RooRealVar*) origObsSet->find(arg->GetName()) ;
328 if (origObs) {
329 origObs->setRange(fitRangeName.c_str(), realObs->getMin(rangeName), realObs->getMax(rangeName));
330 }
331 }
332 }
333 }
334
335 if (!observablesKnowRange)
336 coutW(Fitting) << "None of the fit observables seem to know the range '" << rangeName << "'. This means that the full range will be used." << std::endl;
337 }
338
339
340 // ******************************************************************
341 // *** PART 3.2 *** Binned fits *
342 // ******************************************************************
343
344 // If dataset is binned, activate caching of bins that are invalid because the're outside the
345 // updated range definition (WVE need to add virtual interface here)
346 RooDataHist* tmph = dynamic_cast<RooDataHist*>(_dataClone) ;
347 if (tmph) {
348 tmph->cacheValidEntries() ;
349 }
350
352
353
354 // Fix RooAddPdf coefficients to original normalization range
355 if (rangeName && strlen(rangeName)) {
356
357 // WVE Remove projected dependents from normalization
359
360 if (addCoefRangeName && strlen(addCoefRangeName)) {
361 cxcoutI(Fitting) << "RooAbsOptTestStatistic::ctor(" << GetName()
362 << ") fixing interpretation of coefficients of any RooAddPdf component to range " << addCoefRangeName << endl ;
363 _funcClone->fixAddCoefRange(addCoefRangeName,kFALSE) ;
364 } else {
365 cxcoutI(Fitting) << "RooAbsOptTestStatistic::ctor(" << GetName()
366 << ") fixing interpretation of coefficients of any RooAddPdf to full domain of observables " << endl ;
367 _funcClone->fixAddCoefRange(Form("NormalizationRangeFor%s",rangeName),kFALSE) ;
368 }
369 }
370
371
372 // This is deferred from part 2 - but must happen after part 3 - otherwise invalid bins cannot be properly marked in cacheValidEntries
375
376
377
378
379 // *********************************************************************
380 // *** PART 4 *** Adjust normalization range for projected observables *
381 // *********************************************************************
382
383 // Remove projected dependents from normalization set
384 if (projDeps.getSize()>0) {
385
386 _projDeps = (RooArgSet*) projDeps.snapshot(kFALSE) ;
387
388 //RooArgSet* tobedel = (RooArgSet*) _normSet->selectCommon(*_projDeps) ;
390
391 // Mark all projected dependents as such
393 projDataDeps->setAttribAll("projectedDependent") ;
394 delete projDataDeps ;
395 }
396
397
398 coutI(Optimization) << "RooAbsOptTestStatistic::ctor(" << GetName() << ") optimizing internal clone of p.d.f for likelihood evaluation."
399 << "Lazy evaluation and associated change tracking will disabled for all nodes that depend on observables" << endl ;
400
401
402 // *********************************************************************
403 // *** PART 4 *** Finalization and activation of optimization *
404 // *********************************************************************
405
406 // Redirect pointers of base class to clone
407 _func = _funcClone ;
408 _data = _dataClone ;
409
411
413
414}
415
416
417////////////////////////////////////////////////////////////////////////////////
418/// Destructor
419
421{
422 if (operMode()==Slave) {
423 delete _funcClone ;
424 delete _funcObsSet ;
425 if (_projDeps) {
426 delete _projDeps ;
427 }
428 if (_ownData) {
429 delete _dataClone ;
430 }
431 }
432 delete _normSet ;
433}
434
435
436
437////////////////////////////////////////////////////////////////////////////////
438/// Method to combined test statistic results calculated into partitions into
439/// the global result. This default implementation adds the partition return
440/// values
441
443{
444 // Default implementation returns sum of components
445 Double_t sum(0), carry(0);
446 for (Int_t i = 0; i < n; ++i) {
447 Double_t y = array[i]->getValV();
448 carry += reinterpret_cast<RooAbsOptTestStatistic*>(array[i])->getCarry();
449 y -= carry;
450 const Double_t t = sum + y;
451 carry = (t - sum) - y;
452 sum = t;
453 }
454 _evalCarry = carry;
455 return sum ;
456}
457
458
459
460////////////////////////////////////////////////////////////////////////////////
461/// Catch server redirect calls and forward to internal clone of function
462
463Bool_t RooAbsOptTestStatistic::redirectServersHook(const RooAbsCollection& newServerList, Bool_t mustReplaceAll, Bool_t nameChange, Bool_t isRecursive)
464{
465 RooAbsTestStatistic::redirectServersHook(newServerList,mustReplaceAll,nameChange,isRecursive) ;
466 if (operMode()!=Slave) return kFALSE ;
467 Bool_t ret = _funcClone->recursiveRedirectServers(newServerList,kFALSE,nameChange) ;
468 return ret ;
469}
470
471
472
473////////////////////////////////////////////////////////////////////////////////
474/// Catch print hook function and forward to function clone
475
477{
479 if (operMode()!=Slave) return ;
480 TString indent2(indent) ;
481 indent2 += "opt >>" ;
482 _funcClone->printCompactTree(os,indent2.Data()) ;
483 os << indent2 << " dataset clone = " << _dataClone << " first obs = " << _dataClone->get()->first() << endl ;
484}
485
486
487
488////////////////////////////////////////////////////////////////////////////////
489/// Driver function to propagate constant term optimizations in test statistic.
490/// If code Activate is sent, constant term optimization will be executed.
491/// If code Deactivate is sent, any existing constant term optimizations will
492/// be abandoned. If codes ConfigChange or ValueChange are sent, any existing
493/// constant term optimizations will be redone.
494
496{
497 // cout << "ROATS::constOpt(" << GetName() << ") funcClone structure dump BEFORE const-opt" << endl ;
498 // _funcClone->Print("t") ;
499
500 RooAbsTestStatistic::constOptimizeTestStatistic(opcode,doAlsoTrackingOpt);
501 if (operMode()!=Slave) return ;
502
503 if (_dataClone->hasFilledCache() && _dataClone->store()->cacheOwner()!=this) {
504 if (opcode==Activate) {
505 cxcoutW(Optimization) << "RooAbsOptTestStatistic::constOptimize(" << GetName()
506 << ") dataset cache is owned by another object, no constant term optimization can be applied" << endl ;
507 }
508 return ;
509 }
510
511 if (!allowFunctionCache()) {
512 if (opcode==Activate) {
513 cxcoutI(Optimization) << "RooAbsOptTestStatistic::constOptimize(" << GetName()
514 << ") function caching prohibited by test statistic, no constant term optimization is applied" << endl ;
515 }
516 return ;
517 }
518
519 if (_dataClone->hasFilledCache() && opcode==Activate) {
520 opcode=ValueChange ;
521 }
522
523 switch(opcode) {
524 case Activate:
525 cxcoutI(Optimization) << "RooAbsOptTestStatistic::constOptimize(" << GetName()
526 << ") optimizing evaluation of test statistic by finding all nodes in p.d.f that depend exclusively"
527 << " on observables and constant parameters and precalculating their values" << endl ;
528 optimizeConstantTerms(kTRUE,doAlsoTrackingOpt) ;
529 break ;
530
531 case DeActivate:
532 cxcoutI(Optimization) << "RooAbsOptTestStatistic::constOptimize(" << GetName()
533 << ") deactivating optimization of constant terms in test statistic" << endl ;
535 break ;
536
537 case ConfigChange:
538 cxcoutI(Optimization) << "RooAbsOptTestStatistic::constOptimize(" << GetName()
539 << ") one ore more parameter were changed from constant to floating or vice versa, "
540 << "re-evaluating constant term optimization" << endl ;
542 optimizeConstantTerms(kTRUE,doAlsoTrackingOpt) ;
543 break ;
544
545 case ValueChange:
546 cxcoutI(Optimization) << "RooAbsOptTestStatistic::constOptimize(" << GetName()
547 << ") the value of one ore more constant parameter were changed re-evaluating constant term optimization" << endl ;
548 // Request a forcible cache update of all cached nodes
550
551 break ;
552 }
553
554// cout << "ROATS::constOpt(" << GetName() << ") funcClone structure dump AFTER const-opt" << endl ;
555// _funcClone->Print("t") ;
556}
557
558
559
560////////////////////////////////////////////////////////////////////////////////
561/// This method changes the value caching logic for all nodes that depends on any of the observables
562/// as defined by the given dataset. When evaluating a test statistic constructed from the RooAbsReal
563/// with a dataset the observables are guaranteed to change with every call, thus there is no point
564/// in tracking these changes which result in a net overhead. Thus for observable-dependent nodes,
565/// the evaluation mechanism is changed from being dependent on a 'valueDirty' flag to guaranteed evaluation.
566/// On the dataset side, the observables objects are modified to no longer send valueDirty messages
567/// to their client
568
570{
571// cout << "RooAbsOptTestStatistic::optimizeCaching(" << GetName() << "," << this << ")" << endl ;
572
573 // Trigger create of all object caches now in nodes that have deferred object creation
574 // so that cache contents can be processed immediately
576
577 // Set value caching mode for all nodes that depend on any of the observables to ADirty
579
580 // Disable propagation of dirty state flags for observables
582
583 // Disable reading of observables that are not used
585}
586
587
588
589////////////////////////////////////////////////////////////////////////////////
590/// Driver function to activate global constant term optimization.
591/// If activated, constant terms are found and cached with the dataset.
592/// The operation mode of cached nodes is set to AClean meaning that
593/// their getVal() call will never result in an evaluate call.
594/// Finally the branches in the dataset that correspond to observables
595/// that are exclusively used in constant terms are disabled as
596/// they serve no more purpose
597
599{
600 if(activate) {
601
602 if (_optimized) {
603 return ;
604 }
605
606 // Trigger create of all object caches now in nodes that have deferred object creation
607 // so that cache contents can be processed immediately
609
610 // Apply tracking optimization here. Default strategy is to track components
611 // of RooAddPdfs and RooRealSumPdfs. If these components are a RooProdPdf
612 // or a RooProduct respectively, track the components of these products instead
613 // of the product term
614 RooArgSet trackNodes ;
615
616
617 // Add safety check here - applyTrackingOpt will only be applied if present
618 // dataset is constructed in terms of a RooVectorDataStore
619 if (applyTrackingOpt) {
620 if (!dynamic_cast<RooVectorDataStore*>(_dataClone->store())) {
621 coutW(Optimization) << "RooAbsOptTestStatistic::optimizeConstantTerms(" << GetName()
622 << ") WARNING Cache-and-track optimization (Optimize level 2) is only available for datasets"
623 << " implement in terms of RooVectorDataStore - ignoring this option for current dataset" << endl ;
624 applyTrackingOpt = kFALSE ;
625 }
626 }
627
628 if (applyTrackingOpt) {
629 RooArgSet branches ;
630 _funcClone->branchNodeServerList(&branches) ;
631 for (auto arg : branches) {
632 arg->setCacheAndTrackHints(trackNodes);
633 }
634 // Do not set CacheAndTrack on constant expressions
635 RooArgSet* constNodes = (RooArgSet*) trackNodes.selectByAttrib("Constant",kTRUE) ;
636 trackNodes.remove(*constNodes) ;
637 delete constNodes ;
638
639 // Set CacheAndTrack flag on all remaining nodes
640 trackNodes.setAttribAll("CacheAndTrack",kTRUE) ;
641 }
642
643 // Find all nodes that depend exclusively on constant parameters
645
647
648 // Cache constant nodes with dataset - also cache entries corresponding to zero-weights in data when using BinnedLikelihood
649 _dataClone->cacheArgs(this,_cachedNodes,_normSet,!_funcClone->getAttribute("BinnedLikelihood")) ;
650
651 // Put all cached nodes in AClean value caching mode so that their evaluate() is never called
652 for (auto cacheArg : _cachedNodes) {
653 cacheArg->setOperMode(RooAbsArg::AClean) ;
654 }
655
656 RooArgSet* constNodes = (RooArgSet*) _cachedNodes.selectByAttrib("ConstantExpressionCached",kTRUE) ;
657 RooArgSet actualTrackNodes(_cachedNodes) ;
658 actualTrackNodes.remove(*constNodes) ;
659 if (constNodes->getSize()>0) {
660 if (constNodes->getSize()<20) {
661 coutI(Minimization) << " The following expressions have been identified as constant and will be precalculated and cached: " << *constNodes << endl ;
662 } else {
663 coutI(Minimization) << " A total of " << constNodes->getSize() << " expressions have been identified as constant and will be precalculated and cached." << endl ;
664 }
665 }
666 if (actualTrackNodes.getSize()>0) {
667 if (actualTrackNodes.getSize()<20) {
668 coutI(Minimization) << " The following expressions will be evaluated in cache-and-track mode: " << actualTrackNodes << endl ;
669 } else {
670 coutI(Minimization) << " A total of " << constNodes->getSize() << " expressions will be evaluated in cache-and-track-mode." << endl ;
671 }
672 }
673 delete constNodes ;
674
675 // Disable reading of observables that are no longer used
677
678 _optimized = kTRUE ;
679
680 } else {
681
682 // Delete the cache
684
685 // Reactivate all tree branches
687
688 // Reset all nodes to ADirty
690
691 // Disable propagation of dirty state flags for observables
693
695
696
698 }
699}
700
701
702
703////////////////////////////////////////////////////////////////////////////////
704/// Change dataset that is used to given one. If cloneData is kTRUE, a clone of
705/// in the input dataset is made. If the test statistic was constructed with
706/// a range specification on the data, the cloneData argument is ignored and
707/// the data is always cloned.
709{
710
711 if (operMode()==SimMaster) {
712 //cout << "ROATS::setDataSlave() ERROR this is SimMaster _funcClone = " << _funcClone << endl ;
713 return kFALSE ;
714 }
715
716 //cout << "ROATS::setDataSlave() new dataset size = " << indata.numEntries() << endl ;
717 //indata.Print("v") ;
718
719
720 // Delete previous dataset now, if it was owned
721 if (_ownData) {
722 delete _dataClone ;
723 _dataClone = 0 ;
724 }
725
726 if (!cloneData && _rangeName.size()>0) {
727 coutW(InputArguments) << "RooAbsOptTestStatistic::setData(" << GetName() << ") WARNING: test statistic was constructed with range selection on data, "
728 << "ignoring request to _not_ clone the input dataset" << endl ;
729 cloneData = kTRUE ;
730 }
731
732 if (cloneData) {
733 // Cloning input dataset
734 if (_rangeName.size()==0) {
735 _dataClone = (RooAbsData*) indata.reduce(*indata.get()) ;
736 } else {
738 }
739 _ownData = kTRUE ;
740
741 } else {
742
743 // Taking input dataset
744 _dataClone = &indata ;
745 _ownData = ownNewData ;
746
747 }
748
749 // Attach function clone to dataset
752 _data = _dataClone ;
753
754 // ReCache constant nodes with dataset
755 if (_cachedNodes.getSize()>0) {
757 }
758
759 // Adjust internal event count
760 setEventCount(indata.numEntries()) ;
761
762 setValueDirty() ;
763
764// cout << "RAOTS::setDataSlave(" << this << ") END" << endl ;
765
766 return kTRUE ;
767}
768
769
770
771
772////////////////////////////////////////////////////////////////////////////////
773
775{
776 if (_sealed) {
777 Bool_t notice = (sealNotice() && strlen(sealNotice())) ;
778 coutW(ObjectHandling) << "RooAbsOptTestStatistic::data(" << GetName()
779 << ") WARNING: object sealed by creator - access to data is not permitted: "
780 << (notice?sealNotice():"<no user notice>") << endl ;
781 static RooDataSet dummy ("dummy","dummy",RooArgSet()) ;
782 return dummy ;
783 }
784 return *_dataClone ;
785}
786
787
788////////////////////////////////////////////////////////////////////////////////
789
791{
792 if (_sealed) {
793 Bool_t notice = (sealNotice() && strlen(sealNotice())) ;
794 coutW(ObjectHandling) << "RooAbsOptTestStatistic::data(" << GetName()
795 << ") WARNING: object sealed by creator - access to data is not permitted: "
796 << (notice?sealNotice():"<no user notice>") << endl ;
797 static RooDataSet dummy ("dummy","dummy",RooArgSet()) ;
798 return dummy ;
799 }
800 return *_dataClone ;
801}
802
803
804////////////////////////////////////////////////////////////////////////////////
805/// Inspect PDF to find out if we are doing a binned fit to a 1-dimensional unbinned PDF.
806/// If this is the case, enable finer sampling of bins by wrapping PDF into a RooBinSamplingPdf.
807/// The member _integrateBinsPrecision decides how we act:
808/// - < 0: Don't do anything.
809/// - = 0: Only enable feature if fitting unbinned PDF to RooDataHist.
810/// - > 0: Enable as requested.
813 return;
814
815 std::unique_ptr<RooArgSet> funcObservables( _funcClone->getObservables(*_dataClone) );
816 const bool oneDimAndBinned = (1 == std::count_if(funcObservables->begin(), funcObservables->end(), [](const RooAbsArg* arg) {
817 auto var = dynamic_cast<const RooRealVar*>(arg);
818 return var && var->numBins() > 1;
819 }));
820
821 if (!oneDimAndBinned) {
822 if (_integrateBinsPrecision > 0.) {
823 coutE(Fitting) << "Integration over bins was requested, but this is currently only implemented for 1-D fits." << std::endl;
824 }
825 return;
826 }
827
828 // Find the real-valued observable. We don't care about categories.
829 auto theObs = std::find_if(funcObservables->begin(), funcObservables->end(), [](const RooAbsArg* arg){
830 return dynamic_cast<const RooAbsRealLValue*>(arg);
831 });
832 assert(theObs != funcObservables->end());
833
834 RooBinSamplingPdf* newPdf = nullptr;
835
836 if (_integrateBinsPrecision > 0.) {
837 // User forced integration. Let just apply it.
838 newPdf = new RooBinSamplingPdf((std::string(_funcClone->GetName()) + "_binSampling").c_str(),
840 *static_cast<RooAbsRealLValue*>(*theObs),
841 *static_cast<RooAbsPdf*>(_funcClone),
843 } else if (dynamic_cast<RooDataHist*>(_dataClone) != nullptr
846 // User didn't forbid integration, and it seems appropriate with a RooDataHist.
847 coutI(Fitting) << "The PDF '" << _funcClone->GetName() << "' is continuous, but fit to binned data.\n"
848 << "RooFit will integrate it in each bin using the RooBinSamplingPdf." << std::endl;
849 newPdf = new RooBinSamplingPdf((std::string(_funcClone->GetName()) + "_binSampling").c_str(),
851 *static_cast<RooAbsRealLValue*>(*theObs),
852 *static_cast<RooAbsPdf*>(_funcClone));
853 }
854
855 if (newPdf) {
857 _funcClone = newPdf;
858 }
859}
#define e(i)
Definition RSha256.hxx:103
#define coutI(a)
#define cxcoutI(a)
#define coutW(a)
#define cxcoutW(a)
#define coutE(a)
const Bool_t kFALSE
Definition RtypesCore.h:92
const Bool_t kTRUE
Definition RtypesCore.h:91
#define ClassImp(name)
Definition Rtypes.h:364
static void indent(ostringstream &buf, int indent_level)
char name[80]
Definition TGX11.cxx:110
char * Form(const char *fmt,...)
RooAbsArg is the common abstract base class for objects that represent a value and a "shape" in RooFi...
Definition RooAbsArg.h:72
virtual RooAbsArg * cloneTree(const char *newname=0) const
Clone tree expression of objects.
RooArgSet * getObservables(const RooArgSet &set, Bool_t valueOnly=kTRUE) const
Given a set of possible observables, return the observables that this PDF depends on.
Definition RooAbsArg.h:313
void printCompactTree(const char *indent="", const char *fileName=0, const char *namePat=0, RooAbsArg *client=0)
Print tree structure of expression tree on stdout, or to file if filename is specified.
void setStringAttribute(const Text_t *key, const Text_t *value)
Associate string 'value' to this object under key 'key'.
Bool_t findConstantNodes(const RooArgSet &observables, RooArgSet &cacheList)
Find branch nodes with all-constant parameters, and add them to the list of nodes that can be cached ...
friend class RooArgSet
Definition RooAbsArg.h:606
const Text_t * getStringAttribute(const Text_t *key) const
Get string attribute mapped under key 'key'.
void setAttribute(const Text_t *name, Bool_t value=kTRUE)
Set (default) or clear a named boolean attribute of this object.
void setValueDirty()
Mark the element dirty. This forces a re-evaluation when a value is requested.
Definition RooAbsArg.h:508
Bool_t addOwnedComponents(const RooArgSet &comps)
Take ownership of the contents of 'comps'.
virtual void optimizeCacheMode(const RooArgSet &observables)
Activate cache mode optimization with given definition of observables.
Bool_t getAttribute(const Text_t *name) const
Check if a named attribute is set. By default, all attributes are unset.
RooArgSet * getParameters(const RooAbsData *data, bool stripDisconnected=true) const
Create a list of leaf nodes in the arg tree starting with ourself as top node that don't match any of...
void branchNodeServerList(RooAbsCollection *list, const RooAbsArg *arg=0, Bool_t recurseNonDerived=kFALSE) const
Fill supplied list with all branch nodes of the arg tree starting with ourself as top node.
Bool_t recursiveRedirectServers(const RooAbsCollection &newServerList, Bool_t mustReplaceAll=kFALSE, Bool_t nameChange=kFALSE, Bool_t recurseInNewSet=kTRUE)
Recursively replace all servers with the new servers in newSet.
virtual RooAbsReal * highBoundFunc() const
Return pointer to RooAbsReal parameterized upper bound, if any.
virtual RooAbsReal * lowBoundFunc() const
Return pointer to RooAbsReal parameterized lower bound, if any.
RooAbsCollection is an abstract container object that can hold multiple RooAbsArg objects.
virtual void removeAll()
Remove all arguments from our set, deleting them if we own them.
RooAbsCollection * selectCommon(const RooAbsCollection &refColl) const
Create a subset of the current collection, consisting only of those elements that are contained as we...
Int_t getSize() const
Storage_t::size_type size() const
RooAbsArg * first() const
void setAttribAll(const Text_t *name, Bool_t value=kTRUE)
Set given attribute in each element of the collection by calling each elements setAttribute() functio...
RooAbsCollection * selectByAttrib(const char *name, Bool_t value) const
Create a subset of the current collection, consisting only of those elements with the specified attri...
virtual Bool_t remove(const RooAbsArg &var, Bool_t silent=kFALSE, Bool_t matchByNameOnly=kFALSE)
Remove the specified argument from our list.
RooAbsArg * find(const char *name) const
Find object with given name in list.
virtual const RooAbsArg * cacheOwner()=0
virtual void forceCacheUpdate()
RooAbsData is the common abstract base class for binned and unbinned datasets.
Definition RooAbsData.h:49
virtual const RooArgSet * get() const
Definition RooAbsData.h:92
RooAbsDataStore * store()
Definition RooAbsData.h:68
virtual void optimizeReadingWithCaching(RooAbsArg &arg, const RooArgSet &cacheList, const RooArgSet &keepObsList)
Prepare dataset for use with cached constant terms listed in 'cacheList' of expression 'arg'.
RooAbsData * reduce(const RooCmdArg &arg1, const RooCmdArg &arg2=RooCmdArg(), const RooCmdArg &arg3=RooCmdArg(), const RooCmdArg &arg4=RooCmdArg(), const RooCmdArg &arg5=RooCmdArg(), const RooCmdArg &arg6=RooCmdArg(), const RooCmdArg &arg7=RooCmdArg(), const RooCmdArg &arg8=RooCmdArg())
Create a reduced copy of this dataset.
virtual Int_t numEntries() const
Return number of entries in dataset, i.e., count unweighted entries.
virtual void resetCache()
Internal method – Remove cached function values.
Bool_t hasFilledCache() const
virtual void cacheArgs(const RooAbsArg *owner, RooArgSet &varSet, const RooArgSet *nset=0, Bool_t skipZeroWeights=kFALSE)
Internal method – Cache given set of functions with data.
void attachBuffers(const RooArgSet &extObs)
virtual void setArgStatus(const RooArgSet &set, Bool_t active)
void setDirtyProp(Bool_t flag)
Control propagation of dirty flags from observables in dataset.
RooAbsOptTestStatistic is the abstract base class for test statistics objects that evaluate a functio...
virtual ~RooAbsOptTestStatistic()
Destructor.
RooAbsReal * _origFunc
List of nodes that are cached as constant expressions.
void optimizeCaching()
This method changes the value caching logic for all nodes that depends on any of the observables as d...
const char * sealNotice() const
void optimizeConstantTerms(Bool_t, Bool_t=kTRUE)
Driver function to activate global constant term optimization.
void setUpBinSampling()
Inspect PDF to find out if we are doing a binned fit to a 1-dimensional unbinned PDF.
virtual Bool_t allowFunctionCache()
virtual Bool_t redirectServersHook(const RooAbsCollection &newServerList, Bool_t mustReplaceAll, Bool_t nameChange, Bool_t isRecursive)
Catch server redirect calls and forward to internal clone of function.
virtual void printCompactTreeHook(std::ostream &os, const char *indent="")
Catch print hook function and forward to function clone.
void initSlave(RooAbsReal &real, RooAbsData &indata, const RooArgSet &projDeps, const char *rangeName, const char *addCoefRangeName)
virtual Double_t combinedValue(RooAbsReal **gofArray, Int_t nVal) const
Method to combined test statistic results calculated into partitions into the global result.
virtual RooArgSet requiredExtraObservables() const
RooAbsOptTestStatistic()
Default Constructor.
Bool_t setDataSlave(RooAbsData &data, Bool_t cloneData=kTRUE, Bool_t ownNewDataAnyway=kFALSE)
Change dataset that is used to given one.
void constOptimizeTestStatistic(ConstOpCode opcode, Bool_t doAlsoTrackingOpt=kTRUE)
Driver function to propagate constant term optimizations in test statistic.
RooAbsRealLValue is the common abstract base class for objects that represent a real value that may a...
virtual Double_t getMax(const char *name=0) const
Get maximum of currently defined range.
virtual Bool_t hasRange(const char *name) const
Check if variable has a binning with given name.
virtual Double_t getMin(const char *name=0) const
Get miniminum of currently defined range.
RooAbsReal is the common abstract base class for objects that represent a real value and implements f...
Definition RooAbsReal.h:61
virtual void fixAddCoefRange(const char *rangeName=0, Bool_t force=kTRUE)
Fix the interpretation of the coefficient of any RooAddPdf component in the expression tree headed by...
Double_t getVal(const RooArgSet *normalisationSet=nullptr) const
Evaluate object.
Definition RooAbsReal.h:91
virtual Bool_t isBinnedDistribution(const RooArgSet &) const
Tests if the distribution is binned. Unless overridden by derived classes, this always returns false.
Definition RooAbsReal.h:341
virtual Double_t getValV(const RooArgSet *normalisationSet=nullptr) const
Return value of object.
virtual void fixAddCoefNormalization(const RooArgSet &addNormSet=RooArgSet(), Bool_t force=kTRUE)
Fix the interpretation of the coefficient of any RooAddPdf component in the expression tree headed by...
RooAbsTestStatistic is the abstract base class for all test statistics.
GOFOpMode operMode() const
virtual void constOptimizeTestStatistic(ConstOpCode opcode, Bool_t doAlsoTrackingOpt=kTRUE)
Forward constant term optimization management calls to component test statistics.
virtual Bool_t redirectServersHook(const RooAbsCollection &newServerList, Bool_t mustReplaceAll, Bool_t nameChange, Bool_t isRecursive)
Forward server redirect calls to component test statistics.
void setEventCount(Int_t nEvents)
virtual Double_t getCarry() const
Double_t _evalCarry
avoids loss of precision
virtual void printCompactTreeHook(std::ostream &os, const char *indent="")
Add extra information on component test statistics when printing itself as part of a tree structure.
RooArgSet is a container object that can hold multiple RooAbsArg objects.
Definition RooArgSet.h:29
RooArgSet * snapshot(bool deepCopy=true) const
Use RooAbsCollection::snapshot(), but return as RooArgSet.
Definition RooArgSet.h:118
Bool_t add(const RooAbsArg &var, Bool_t silent=kFALSE) override
Add element to non-owning set.
The RooBinSamplingPdf is supposed to be used as an adapter between a continuous PDF and a binned dist...
The RooDataHist is a container class to hold N-dimensional binned data.
Definition RooDataHist.h:37
void cacheValidEntries()
Compute which bins of the dataset are part of the currently set fit range.
RooDataSet is a container class to hold unbinned data.
Definition RooDataSet.h:33
static void softAbort()
RooProdPdf is an efficient implementation of a product of PDFs of the form.
Definition RooProdPdf.h:37
RooArgSet * getConnectedParameters(const RooArgSet &observables) const
Return all parameter constraint p.d.f.s on parameters listed in constrainedParams.
RooRealVar represents a variable that can be changed from the outside.
Definition RooRealVar.h:39
void setRange(const char *name, Double_t min, Double_t max)
Set a fit or plotting range.
const RooAbsBinning & getBinning(const char *name=0, Bool_t verbose=kTRUE, Bool_t createOnTheFly=kFALSE) const
Return binning definition with name.
virtual Bool_t add(const RooAbsArg &var, Bool_t silent=kFALSE) override
Overloaded RooArgSet::add() method inserts 'var' into set and registers 'var' as server to owner with...
virtual void removeAll() override
Remove all argument inset using remove(const RooAbsArg&).
RooVectorDataStore uses std::vectors to store data columns.
virtual const char * GetTitle() const
Returns title of object.
Definition TNamed.h:48
virtual TObject * Clone(const char *newname="") const
Make a clone of an object using the Streamer facility.
Definition TNamed.cxx:74
virtual const char * GetName() const
Returns name of object.
Definition TNamed.h:47
Basic string class.
Definition TString.h:136
const char * Data() const
Definition TString.h:369
RooCmdArg SelectVars(const RooArgSet &vars)
RooCmdArg CutRange(const char *rangeName)
Double_t y[n]
Definition legend1.C:17
const Int_t n
Definition legend1.C:16
static uint64_t sum(uint64_t i)
Definition Factory.cxx:2345