59 RooAbsOptTestStatistic(
name,title,pdf,indata,projdeps,0,0,nCPU,interleave,verbose,
kFALSE),
60 _showProgress(showProgress)
63 coutI(Plotting) <<
"RooDataWeightedAverage::ctor(" <<
GetName() <<
") constructing data weighted average of function " << pdf.
GetName()
64 <<
" over " << indata.
numEntries() <<
" data points of " << *(indata.
get()) <<
" with a total weight of " << indata.
sumEntries() << endl ;
75 _sumWeight(other._sumWeight),
76 _showProgress(other._showProgress)
117 for (
auto i=firstEvent ; i<lastEvent ; i+=stepSize) {
virtual void recalculateCache(const RooArgSet *, Int_t, Int_t, Int_t, Bool_t)
RooAbsData is the common abstract base class for binned and unbinned datasets.
virtual const RooArgSet * get() const
RooAbsDataStore * store()
virtual Double_t sumEntries() const =0
Return effective number of entries in dataset, i.e., sum all weights.
virtual Double_t weight() const =0
virtual Int_t numEntries() const
Return number of entries in dataset, i.e., count unweighted entries.
RooAbsOptTestStatistic is the abstract base class for test statistics objects that evaluate a functio...
RooAbsReal is the common abstract base class for objects that represent a real value and implements f...
Double_t getVal(const RooArgSet *normalisationSet=nullptr) const
Evaluate object.
RooArgSet is a container object that can hold multiple RooAbsArg objects.
Class RooDataWeightedAverage calculate a weighted average of a function or p.d.f given a dataset with...
virtual ~RooDataWeightedAverage()
Destructor.
virtual Double_t evaluatePartition(std::size_t firstEvent, std::size_t lastEvent, std::size_t stepSize) const
Calculate the data weighted average for events [firstEVent,lastEvent] with step size stepSize.
virtual Double_t globalNormalization() const
Return global normalization term by which raw (combined) test statistic should be defined to obtain f...
virtual const char * GetName() const
Returns name of object.