50 EMsgType minType = kINFO ) :
51fMethodRuleFit(rfbase),
54 fLogger(
"RuleFitAPI",minType)
80 <<
"---------------------------------------------------------------------------\n"
81 <<
"- You are running the interface to Jerome Friedmans RuleFit(tm) code. -\n"
82 <<
"- For a full manual see the following web page: -\n"
84 <<
"- http://www-stat.stanford.edu/~jhf/R-RuleFit.html -\n"
86 <<
"---------------------------------------------------------------------------"
96 <<
"------------------------ RULEFIT-JF INTERFACE SETUP -----------------------\n"
98 <<
"1. Create a rulefit directory in your current work directory:\n"
99 <<
" mkdir " << fRFWorkDir <<
"\n\n"
100 <<
" the directory may be set using the option RuleFitDir\n"
102 <<
"2. Copy (or make a link) the file rf_go.exe into this directory\n"
104 <<
"The file can be obtained from Jerome Friedmans homepage (linux):\n"
105 <<
" wget http://www-stat.stanford.edu/~jhf/r-rulefit/linux/rf_go.exe\n"
107 <<
"Don't forget to do:\n"
108 <<
" chmod +x rf_go.exe\n"
110 <<
"For Windows download:\n"
111 <<
" http://www-stat.stanford.edu/~jhf/r-rulefit/windows/rf_go.exe\n"
113 <<
"NOTE: other platforms are not supported (see Friedmans homepage)\n"
115 <<
"---------------------------------------------------------------------------\n"
134 fRFIntParms.p = fMethodRuleFit->DataInfo().GetNVariables();
135 fRFIntParms.max_rules = fMethodRuleFit->GetRFNrules();
136 fRFIntParms.tree_size = fMethodRuleFit->GetRFNendnodes();
137 fRFIntParms.path_steps = fMethodRuleFit->GetGDNPathSteps();
139 fRFRealParms.path_inc = fMethodRuleFit->GetGDPathStep();
140 fRFRealParms.samp_fract = fMethodRuleFit->GetTreeEveFrac();
141 fRFRealParms.trim_qntl = fMethodRuleFit->GetLinQuantile();
142 fRFRealParms.conv_fac = fMethodRuleFit->GetGDErrScale();
144 if (fRuleFit->GetRuleEnsemblePtr()->DoOnlyLinear() )
145 fRFIntParms.lmode = kRfLinear;
146 else if (fRuleFit->GetRuleEnsemblePtr()->DoOnlyRules() )
147 fRFIntParms.lmode = kRfRules;
149 fRFIntParms.lmode = kRfBoth;
170 fLogger << kWARNING <<
"Must create a rulefit directory named : " << fRFWorkDir <<
Endl;
172 fLogger << kFATAL <<
"Setup failed - aborting!" <<
Endl;
175 FILE *
f = fopen(
"rf_go.exe",
"r");
177 fLogger << kWARNING <<
"No rf_go.exe file in directory : " << fRFWorkDir <<
Endl;
179 fLogger << kFATAL <<
"Setup failed - aborting!" <<
Endl;
192 Int_t n = fMethodRuleFit->Data()->GetNTrainingEvents();
195 fRFProgram = kRfTrain;
204 Int_t n = fMethodRuleFit->Data()->GetNTestEvents();
207 fRFProgram = kRfPredict;
215 fRFRealParms.xmiss = 9.0e30;
216 fRFRealParms.trim_qntl = 0.025;
217 fRFRealParms.huber = 0.8;
218 fRFRealParms.inter_supp = 3.0;
219 fRFRealParms.memory_par = 0.01;
220 fRFRealParms.samp_fract = 0.5;
221 fRFRealParms.path_inc = 0.01;
222 fRFRealParms.conv_fac = 1.1;
230 fRFIntParms.mode = (
int)kRfClass;
231 fRFIntParms.lmode = (
int)kRfBoth;
234 fRFIntParms.max_rules = 2000;
235 fRFIntParms.tree_size = 4;
236 fRFIntParms.path_speed = 2;
237 fRFIntParms.path_xval = 3;
238 fRFIntParms.path_steps = 50000;
239 fRFIntParms.path_testfreq = 100;
240 fRFIntParms.tree_store = 10000000;
241 fRFIntParms.cat_store = 1000000;
255 if (fRFProgram==kRfTrain) WriteTrain();
256 if (fRFProgram==kRfPredict) WriteTest();
257 if (fRFProgram==kRfVarimp) WriteRealVarImp();
267 if (!OpenRFile(
"intparms",
f))
return kFALSE;
268 WriteInt(
f,&fRFIntParms.mode,
sizeof(fRFIntParms)/
sizeof(
Int_t));
278 if (!OpenRFile(
"realparms",
f))
return kFALSE;
279 WriteFloat(
f,&fRFRealParms.xmiss,
sizeof(fRFRealParms)/
sizeof(
Float_t));
294 fRFLx.resize(fMethodRuleFit->DataInfo().GetNVariables(),1);
297 if (!OpenRFile(
"lx",
f))
return kFALSE;
298 WriteInt(
f,&fRFLx[0],fRFLx.size());
308 if (!OpenRFile(
"program",
f))
return kFALSE;
310 switch (fRFProgram) {
315 program =
"rulefit_pred";
322 fRFProgram = kRfTrain;
336 if (!OpenRFile(
"realvarimp",
f))
return kFALSE;
340 WriteFloat(
f,&rvp[0],2);
349 fLogger << kWARNING <<
"WriteRfOut is not yet implemented" <<
Endl;
358 fLogger << kWARNING <<
"WriteRfStatus is not yet implemented" <<
Endl;
367 fLogger << kWARNING <<
"WriteRuleFitMod is not yet implemented" <<
Endl;
376 fLogger << kWARNING <<
"WriteRuleFitSum is not yet implemented" <<
Endl;
389 if (!OpenRFile(
"train.x",fx))
return kFALSE;
390 if (!OpenRFile(
"train.y",fy))
return kFALSE;
391 if (!OpenRFile(
"train.w",fw))
return kFALSE;
398 for (
UInt_t ivar=0; ivar<fMethodRuleFit->DataInfo().GetNVariables(); ivar++) {
399 for (
Int_t ievt=0;ievt<fMethodRuleFit->Data()->GetNTrainingEvents(); ievt++) {
400 const Event * ev = fMethodRuleFit->GetTrainingEvent(ievt);
405 y = fMethodRuleFit->DataInfo().IsSignal(ev)? 1.0 : -1.0;
411 fLogger << kINFO <<
"Number of training data written: " << fMethodRuleFit->Data()->GetNTrainingEvents() <<
Endl;
424 if (!OpenRFile(
"test.x",
f))
return kFALSE;
429 neve =
static_cast<Float_t>(fMethodRuleFit->Data()->GetNEvents());
430 WriteFloat(
f,&neve,1);
436 for (
UInt_t ivar=0; ivar<fMethodRuleFit->DataInfo().GetNVariables(); ivar++) {
437 for (
Int_t ievt=0;ievt<fMethodRuleFit->Data()->GetNEvents(); ievt++) {
438 vf = fMethodRuleFit->GetEvent(ievt)->GetValue(ivar);
442 fLogger << kINFO <<
"Number of test data written: " << fMethodRuleFit->Data()->GetNEvents() <<
Endl;
453 if (!OpenRFile(
"varnames",
f))
return kFALSE;
454 for (
UInt_t ivar=0; ivar<fMethodRuleFit->DataInfo().GetNVariables(); ivar++) {
455 f << fMethodRuleFit->DataInfo().GetVariableInfo(ivar).GetExpression() <<
'\n';
466 fLogger << kWARNING <<
"WriteVarImp is not yet implemented" <<
Endl;
475 fLogger << kWARNING <<
"WriteYhat is not yet implemented" <<
Endl;
487 if (!OpenRFile(
"yhat",
f))
return kFALSE;
490 ReadFloat(
f,&xval,1);
491 neve =
static_cast<Int_t>(xval);
492 if (neve!=fMethodRuleFit->Data()->GetNTestEvents()) {
493 fLogger << kWARNING <<
"Inconsistent size of yhat file and test tree!" <<
Endl;
494 fLogger << kWARNING <<
"neve = " << neve <<
" , tree = " << fMethodRuleFit->Data()->GetNTestEvents() <<
Endl;
497 for (
Int_t ievt=0; ievt<fMethodRuleFit->Data()->GetNTestEvents(); ievt++) {
498 ReadFloat(
f,&xval,1);
499 fRFYhat.push_back(xval);
512 if (!OpenRFile(
"varimp",
f))
return kFALSE;
516 nvars=fMethodRuleFit->DataInfo().GetNVariables();
520 for (
UInt_t ivar=0; ivar<nvars; ivar++) {
521 ReadFloat(
f,&xval,1);
527 fRFVarImp.push_back(xval);
533 for (
UInt_t ivar=0; ivar<nvars; ivar++) {
534 fRFVarImp[ivar] = fRFVarImp[ivar]/
xmax;
535 ReadFloat(
f,&xval,1);
536 fRFVarImpInd.push_back(
Int_t(xval)-1);
548 fLogger << kVERBOSE <<
"Reading RuleFit summary file" <<
Endl;
550 if (!OpenRFile(
"rulefit.sum",
f))
return kFALSE;
561 fRuleFit->GetRuleEnsemblePtr()->SetAverageRuleSigma(0.4);
589 lines += ReadInt(
f,&nrules);
590 norules = (nrules==1);
591 lines += ReadInt(
f,&dumI);
592 norules = norules && (dumI==1);
593 lines += ReadInt(
f,&dumI);
594 norules = norules && (dumI==1);
595 lines += ReadInt(
f,&dumI);
596 norules = norules && (dumI==0);
597 if (nrules==0) norules=
kTRUE;
598 if (norules) nrules = 0;
600 lines += ReadInt(
f,&nvars);
601 lines += ReadInt(
f,&nvarsOpt);
602 lines += ReadFloat(
f,&dumF);
603 lines += ReadFloat(
f,&offset);
604 fLogger << kDEBUG <<
"N(rules) = " << nrules <<
Endl;
605 fLogger << kDEBUG <<
"N(vars) = " << nvars <<
Endl;
606 fLogger << kDEBUG <<
"N(varsO) = " << nvarsOpt <<
Endl;
607 fLogger << kDEBUG <<
"xmiss = " << dumF <<
Endl;
608 fLogger << kDEBUG <<
"offset = " << offset <<
Endl;
609 if (nvars!=nvarsOpt) {
610 fLogger << kWARNING <<
"Format of rulefit.sum is ... weird?? Continuing but who knows how it will end...?" <<
Endl;
612 std::vector<Double_t> rfSupp;
613 std::vector<Double_t> rfCoef;
614 std::vector<Int_t> rfNcut;
615 std::vector<Rule *> rfRules;
619 for (
Int_t t=0; t<8; t++) {
620 lines += ReadFloat(
f,&dumF);
635 lines += ReadFloat(
f,&dumF);
636 lines += ReadFloat(
f,&dumF);
637 rfSupp.push_back(dumF);
638 lines += ReadFloat(
f,&dumF);
639 rfCoef.push_back(dumF);
640 lines += ReadFloat(
f,&dumF);
641 rfNcut.push_back(
static_cast<int>(dumF+0.5));
642 lines += ReadFloat(
f,&dumF);
659 Rule *rule =
new Rule(fRuleFit->GetRuleEnsemblePtr());
660 rfRules.push_back( rule );
678 if (imp>impref) impref = imp;
680 fLogger << kDEBUG <<
"Rule #" <<
r <<
" : " << nvars <<
Endl;
681 fLogger << kDEBUG <<
" support = " << rfSupp[
r] <<
Endl;
682 fLogger << kDEBUG <<
" sigma = " << rule->
GetSigma() <<
Endl;
683 fLogger << kDEBUG <<
" coeff = " << rfCoef[
r] <<
Endl;
684 fLogger << kDEBUG <<
" N(cut) = " << rfNcut[
r] <<
Endl;
687 lines += ReadFloat(
f,&dumF);
688 varind =
static_cast<Int_t>(dumF+0.5)-1;
689 lines += ReadFloat(
f,&dumF);
691 lines += ReadFloat(
f,&dumF);
704 fRuleFit->GetRuleEnsemblePtr()->SetRules( rfRules );
705 fRuleFit->GetRuleEnsemblePtr()->SetOffset( offset );
718 std::vector<Int_t> varind;
719 std::vector<Double_t>
xmin;
720 std::vector<Double_t>
xmax;
721 std::vector<Double_t> average;
722 std::vector<Double_t> stdev;
723 std::vector<Double_t> norm;
724 std::vector<Double_t> coeff;
727 lines += ReadFloat(
f,&dumF);
728 varind.push_back(
static_cast<Int_t>(dumF+0.5)-1);
729 lines += ReadFloat(
f,&dumF);
731 lines += ReadFloat(
f,&dumF);
733 lines += ReadFloat(
f,&dumF);
734 average.push_back(
static_cast<Double_t>(dumF));
735 lines += ReadFloat(
f,&dumF);
736 stdev.push_back(
static_cast<Double_t>(dumF));
737 Double_t nv = fRuleFit->GetRuleEnsemblePtr()->CalcLinNorm(stdev.back());
739 lines += ReadFloat(
f,&dumF);
740 coeff.push_back(dumF/nv);
742 fLogger << kDEBUG <<
"Linear #" <<
c <<
Endl;
743 fLogger << kDEBUG <<
" varind = " << varind.back() <<
Endl;
744 fLogger << kDEBUG <<
" xmin = " <<
xmin.back() <<
Endl;
745 fLogger << kDEBUG <<
" xmax = " <<
xmax.back() <<
Endl;
746 fLogger << kDEBUG <<
" average = " << average.back() <<
Endl;
747 fLogger << kDEBUG <<
" stdev = " << stdev.back() <<
Endl;
748 fLogger << kDEBUG <<
" coeff = " << coeff.back() <<
Endl;
751 fRuleFit->GetRuleEnsemblePtr()->SetLinCoefficients(coeff);
752 fRuleFit->GetRuleEnsemblePtr()->SetLinDM(
xmin);
753 fRuleFit->GetRuleEnsemblePtr()->SetLinDP(
xmax);
754 fRuleFit->GetRuleEnsemblePtr()->SetLinNorm(norm);
757 imp = fRuleFit->GetRuleEnsemblePtr()->CalcLinImportance();
758 if (imp>impref) impref=imp;
759 fRuleFit->GetRuleEnsemblePtr()->SetImportanceRef(impref);
760 fRuleFit->GetRuleEnsemblePtr()->CleanupLinear();
762 fRuleFit->GetRuleEnsemblePtr()->CalcVarImportance();
765 fLogger << kDEBUG <<
"Reading model done" <<
Endl;
R__EXTERN TSystem * gSystem
Float_t GetValue(UInt_t ivar) const
return value of i'th variable
Double_t GetWeight() const
return the event weight - depending on whether the flag IgnoreNegWeightsInTraining is or not.
J Friedman's RuleFit method.
const TString GetRFWorkDir() const
A class describing a 'rule cut'.
void SetSelector(Int_t i, UInt_t s)
void SetCutDoMin(Int_t i, Bool_t v)
void SetCutMin(Int_t i, Double_t v)
void SetCutMax(Int_t i, Double_t v)
void SetCutDoMax(Int_t i, Bool_t v)
J Friedman's RuleFit method.
void SetTestParms()
set the test params
Bool_t WriteRuleFitSum()
written by rf_go.exe (NOTE: format unknown!)
Bool_t WriteYhat()
written by rf_go.exe
Bool_t WriteAll()
write all files read by rf_go.exe
void ImportSetup()
import setup from MethodRuleFit
Bool_t WriteRfStatus()
written by rf_go.exe; write rulefit status
Bool_t WriteIntParms()
write int params file
void CheckRFWorkDir()
check if the rulefit work dir is properly setup.
Bool_t WriteProgram()
write command to rf_go.exe
Bool_t ReadModelSum()
read model from rulefit.sum
void SetRFWorkDir(const char *wdir)
set the directory containing rf_go.exe.
Bool_t ReadVarImp()
read variable importance
Bool_t WriteRuleFitMod()
written by rf_go.exe (NOTE:Format unknown!)
Bool_t WriteRfOut()
written by rf_go.exe; write rulefit output (rfout)
void InitRuleFit()
default initialisation SetRFWorkDir("./rulefit");
void FillRealParmsDef()
set default real params
Bool_t WriteVarNames()
write variable names, ascii
Bool_t WriteRealVarImp()
write the minimum importance to be considered
void FillIntParmsDef()
set default int params
void WelcomeMessage()
welcome message
Bool_t WriteTrain()
write training data, column wise
virtual ~RuleFitAPI()
destructor
Bool_t WriteRealParms()
write int params file
Bool_t WriteLx()
Save input variable mask.
Bool_t ReadYhat()
read the score
void HowtoSetupRF()
howto message
Bool_t WriteTest()
Write test data.
void SetTrainParms()
set the training parameters
Int_t RunRuleFit()
execute rf_go.exe
A class implementing various fits of rule ensembles.
Implementation of a rule.
void SetImportanceRef(Double_t v)
void SetCoefficient(Double_t v)
void SetNorm(Double_t norm)
Double_t GetImportance() const
Double_t GetSigma() const
void SetSSBNeve(Double_t v)
void SetRuleCut(RuleCut *rc)
void SetSupport(Double_t v)
const char * Data() const
Bool_t cd(const char *path)
virtual Int_t Exec(const char *shellcmd)
Execute a command.
MsgLogger & Endl(MsgLogger &ml)