| 
| double  | acos (double) | 
|   | 
| Double_t  | TMath::ACos (Double_t) | 
|   | 
| Double_t  | TMath::ACosH (Double_t) | 
|   | 
| Bool_t  | TMath::AreEqualAbs (Double_t af, Double_t bf, Double_t epsilon) | 
|   | 
| Bool_t  | TMath::AreEqualRel (Double_t af, Double_t bf, Double_t relPrec) | 
|   | 
| double  | asin (double) | 
|   | 
| Double_t  | TMath::ASin (Double_t) | 
|   | 
| Double_t  | TMath::ASinH (Double_t) | 
|   | 
| double  | atan (double) | 
|   | 
| Double_t  | TMath::ATan (Double_t) | 
|   | 
| double  | atan2 (double, double) | 
|   | 
| Double_t  | TMath::ATan2 (Double_t y, Double_t x) | 
|   | 
| Double_t  | TMath::ATanH (Double_t) | 
|   | 
| Double_t  | TMath::BesselI (Int_t n, Double_t x) | 
|   | Compute the Integer Order Modified Bessel function I_n(x) for n=0,1,2,... and any real x.  
  | 
|   | 
| Double_t  | TMath::BesselI0 (Double_t x) | 
|   | integer order modified Bessel function K_n(x)  
  | 
|   | 
| Double_t  | TMath::BesselI1 (Double_t x) | 
|   | modified Bessel function K_0(x)  
  | 
|   | 
| Double_t  | TMath::BesselJ0 (Double_t x) | 
|   | modified Bessel function K_1(x)  
  | 
|   | 
| Double_t  | TMath::BesselJ1 (Double_t x) | 
|   | Bessel function J0(x) for any real x.  
  | 
|   | 
| Double_t  | TMath::BesselK (Int_t n, Double_t x) | 
|   | integer order modified Bessel function I_n(x)  
  | 
|   | 
| Double_t  | TMath::BesselK0 (Double_t x) | 
|   | modified Bessel function I_0(x)  
  | 
|   | 
| Double_t  | TMath::BesselK1 (Double_t x) | 
|   | modified Bessel function I_1(x)  
  | 
|   | 
| Double_t  | TMath::BesselY0 (Double_t x) | 
|   | Bessel function J1(x) for any real x.  
  | 
|   | 
| Double_t  | TMath::BesselY1 (Double_t x) | 
|   | Bessel function Y0(x) for positive x.  
  | 
|   | 
| Double_t  | TMath::Beta (Double_t p, Double_t q) | 
|   | Calculates Beta-function Gamma(p)*Gamma(q)/Gamma(p+q).  
  | 
|   | 
| Double_t  | TMath::BetaCf (Double_t x, Double_t a, Double_t b) | 
|   | Continued fraction evaluation by modified Lentz's method used in calculation of incomplete Beta function.  
  | 
|   | 
| Double_t  | TMath::BetaDist (Double_t x, Double_t p, Double_t q) | 
|   | Computes the probability density function of the Beta distribution (the distribution function is computed in BetaDistI).  
  | 
|   | 
| Double_t  | TMath::BetaDistI (Double_t x, Double_t p, Double_t q) | 
|   | Computes the distribution function of the Beta distribution.  
  | 
|   | 
| Double_t  | TMath::BetaIncomplete (Double_t x, Double_t a, Double_t b) | 
|   | Calculates the incomplete Beta-function.  
  | 
|   | 
| Double_t  | TMath::Binomial (Int_t n, Int_t k) | 
|   | Calculate the binomial coefficient n over k.  
  | 
|   | 
| Double_t  | TMath::BinomialI (Double_t p, Int_t n, Int_t k) | 
|   | Suppose an event occurs with probability p per trial Then the probability P of its occurring k or more times in n trials is termed a cumulative binomial probability the formula is P = sum_from_j=k_to_n(TMath::Binomial(n, j)* *TMath::Power(p, j)*TMathPower(1-p, n-j) For n larger than 12 BetaIncomplete is a much better way to evaluate the sum than would be the straightforward sum calculation for n smaller than 12 either method is acceptable ("Numerical Recipes") –implementation by Anna Kreshuk.  
  | 
|   | 
| Double_t  | TMath::BreitWigner (Double_t x, Double_t mean=0, Double_t gamma=1) | 
|   | Calculate a Breit Wigner function with mean and gamma.  
  | 
|   | 
| void  | TMath::BubbleHigh (Int_t Narr, Double_t *arr1, Int_t *arr2) | 
|   | Bubble sort variant to obtain the order of an array's elements into an index in order to do more useful things than the standard built in functions.  
  | 
|   | 
| void  | TMath::BubbleLow (Int_t Narr, Double_t *arr1, Int_t *arr2) | 
|   | Opposite ordering of the array arr2[] to that of BubbleHigh.  
  | 
|   | 
| constexpr Double_t  | TMath::C () | 
|   | Velocity of light in \( m s^{-1} \).  
  | 
|   | 
| Double_t  | TMath::CauchyDist (Double_t x, Double_t t=0, Double_t s=1) | 
|   | Computes the density of Cauchy distribution at point x by default, standard Cauchy distribution is used (t=0, s=1)  
  | 
|   | 
| constexpr Double_t  | TMath::Ccgs () | 
|   | \( cm s^{-1} \)  
  | 
|   | 
| double  | ceil (double) | 
|   | 
| Double_t  | TMath::Ceil (Double_t x) | 
|   | 
| Int_t  | TMath::CeilNint (Double_t x) | 
|   | 
| Double_t  | TMath::ChisquareQuantile (Double_t p, Double_t ndf) | 
|   | Evaluate the quantiles of the chi-squared probability distribution function.  
  | 
|   | 
| double  | cos (double) | 
|   | 
| Double_t  | TMath::Cos (Double_t) | 
|   | 
| double  | cosh (double) | 
|   | 
| Double_t  | TMath::CosH (Double_t) | 
|   | 
| template<typename T >  | 
| T *  | TMath::Cross (const T v1[3], const T v2[3], T out[3]) | 
|   | Calculate the Cross Product of two vectors: out = [v1 x v2].  
  | 
|   | 
| constexpr Double_t  | TMath::CUncertainty () | 
|   | Speed of light uncertainty.  
  | 
|   | 
| constexpr Double_t  | TMath::DegToRad () | 
|   | Conversion from degree to radian:  
  | 
|   | 
| Double_t  | TMath::DiLog (Double_t x) | 
|   | Modified Struve functions of order 1.  
  | 
|   | 
| constexpr Double_t  | TMath::E () | 
|   | Base of natural log:  
  | 
|   | 
| Double_t  | TMath::Erf (Double_t x) | 
|   | Computation of the error function erf(x).  
  | 
|   | 
| Double_t  | TMath::Erfc (Double_t x) | 
|   | Compute the complementary error function erfc(x).  
  | 
|   | 
| Double_t  | TMath::ErfcInverse (Double_t x) | 
|   | returns the inverse of the complementary error function x must be 0<x<2 implement using the quantile of the normal distribution instead of ErfInverse for better numerical precision for large x  
  | 
|   | 
| Double_t  | TMath::ErfInverse (Double_t x) | 
|   | returns the inverse error function x must be <-1<x<1  
  | 
|   | 
| constexpr Double_t  | TMath::EulerGamma () | 
|   | Euler-Mascheroni Constant.  
  | 
|   | 
| double  | exp (double) | 
|   | 
| Double_t  | TMath::Exp (Double_t x) | 
|   | 
| Double_t  | TMath::Factorial (Int_t i) | 
|   | Compute factorial(n).  
  | 
|   | 
| Double_t  | TMath::FDist (Double_t F, Double_t N, Double_t M) | 
|   | Computes the density function of F-distribution (probability function, integral of density, is computed in FDistI).  
  | 
|   | 
| Double_t  | TMath::FDistI (Double_t F, Double_t N, Double_t M) | 
|   | Calculates the cumulative distribution function of F-distribution, this function occurs in the statistical test of whether two observed samples have the same variance.  
  | 
|   | 
| int  | finite (double) | 
|   | 
| Int_t  | TMath::Finite (Double_t x) | 
|   | Check if it is finite with a mask in order to be consistent in presence of fast math.  
  | 
|   | 
| Int_t  | TMath::Finite (Float_t x) | 
|   | Check if it is finite with a mask in order to be consistent in presence of fast math.  
  | 
|   | 
| double  | floor (double) | 
|   | 
| Double_t  | TMath::Floor (Double_t x) | 
|   | 
| Int_t  | TMath::FloorNint (Double_t x) | 
|   | 
| Double_t  | TMath::Freq (Double_t x) | 
|   | Computation of the normal frequency function freq(x).  
  | 
|   | 
| constexpr Double_t  | TMath::G () | 
|   | Gravitational constant in: \( m^{3} kg^{-1} s^{-2} \).  
  | 
|   | 
| Double_t  | TMath::Gamma (Double_t a, Double_t x) | 
|   | Computation of the normalized lower incomplete gamma function P(a,x) as defined in the Handbook of Mathematical Functions by Abramowitz and Stegun, formula 6.5.1 on page 260 .  
  | 
|   | 
| Double_t  | TMath::Gamma (Double_t z) | 
|   | Computation of gamma(z) for all z.  
  | 
|   | 
| Double_t  | TMath::GammaDist (Double_t x, Double_t gamma, Double_t mu=0, Double_t beta=1) | 
|   | Computes the density function of Gamma distribution at point x.  
  | 
|   | 
| Double_t  | TMath::Gaus (Double_t x, Double_t mean=0, Double_t sigma=1, Bool_t norm=kFALSE) | 
|   | Calculate a gaussian function with mean and sigma.  
  | 
|   | 
| constexpr Double_t  | TMath::Gcgs () | 
|   | \( cm^{3} g^{-1} s^{-2} \)  
  | 
|   | 
| template<typename Iterator >  | 
| Double_t  | TMath::GeomMean (Iterator first, Iterator last) | 
|   | Return the geometric mean of an array defined by the iterators.  
  | 
|   | 
| template<typename T >  | 
| Double_t  | TMath::GeomMean (Long64_t n, const T *a) | 
|   | Return the geometric mean of an array a of size n.  
  | 
|   | 
| constexpr Double_t  | TMath::GhbarC () | 
|   | \( \frac{G}{\hbar C} \) in \( (GeV/c^{2})^{-2} \)  
  | 
|   | 
| constexpr Double_t  | TMath::GhbarCUncertainty () | 
|   | \( \frac{G}{\hbar C} \) uncertainty.  
  | 
|   | 
| constexpr Double_t  | TMath::Gn () | 
|   | Standard acceleration of gravity in \( m s^{-2} \).  
  | 
|   | 
| constexpr Double_t  | TMath::GnUncertainty () | 
|   | Standard acceleration of gravity uncertainty.  
  | 
|   | 
| constexpr Double_t  | TMath::GUncertainty () | 
|   | Gravitational constant uncertainty.  
  | 
|   | 
| constexpr Double_t  | TMath::H () | 
|   | Planck's constant in \( J s \).  
  | 
|   | 
| ULong_t  | TMath::Hash (const char *str) | 
|   | 
| ULong_t  | TMath::Hash (const void *txt, Int_t ntxt) | 
|   | Calculates hash index from any char string.  
  | 
|   | 
| constexpr Double_t  | TMath::Hbar () | 
|   | \( \hbar \) in \( J s \)  
  | 
|   | 
| constexpr Double_t  | TMath::Hbarcgs () | 
|   | \( erg s \)  
  | 
|   | 
| constexpr Double_t  | TMath::HbarUncertainty () | 
|   | \( \hbar \) uncertainty.  
  | 
|   | 
| constexpr Double_t  | TMath::HC () | 
|   | \( hc \) in \( J m \)  
  | 
|   | 
| constexpr Double_t  | TMath::HCcgs () | 
|   | \( erg cm \)  
  | 
|   | 
| constexpr Double_t  | TMath::Hcgs () | 
|   | \( erg s \)  
  | 
|   | 
| constexpr Double_t  | TMath::HUncertainty () | 
|   | Planck's constant uncertainty.  
  | 
|   | 
| Double_t  | TMath::Hypot (Double_t x, Double_t y) | 
|   | 
| Long_t  | TMath::Hypot (Long_t x, Long_t y) | 
|   | 
| Double_t  | TMath::Infinity () | 
|   | Returns an infinity as defined by the IEEE standard.  
  | 
|   | 
| constexpr Double_t  | TMath::InvPi () | 
|   | \( \frac{1.}{\pi}\)  
  | 
|   | 
| template<typename T >  | 
| Bool_t  | TMath::IsInside (T xp, T yp, Int_t np, T *x, T *y) | 
|   | Function which returns kTRUE if point xp,yp lies inside the polygon defined by the np points in arrays x and y, kFALSE otherwise.  
  | 
|   | 
| int  | isnan (double) | 
|   | 
| Bool_t  | TMath::IsNaN (Double_t x) | 
|   | 
| Bool_t  | TMath::IsNaN (Float_t x) | 
|   | 
| constexpr Double_t  | TMath::K () | 
|   | Boltzmann's constant in \( J K^{-1} \).  
  | 
|   | 
| constexpr Double_t  | TMath::Kcgs () | 
|   | \( erg K^{-1} \)  
  | 
|   | 
| Double_t  | TMath::KolmogorovProb (Double_t z) | 
|   | Calculates the Kolmogorov distribution function,.  
  | 
|   | 
| Double_t  | TMath::KolmogorovTest (Int_t na, const Double_t *a, Int_t nb, const Double_t *b, Option_t *option) | 
|   | Statistical test whether two one-dimensional sets of points are compatible with coming from the same parent distribution, using the Kolmogorov test.  
  | 
|   | 
| template<class Element , typename Size >  | 
| Element  | TMath::KOrdStat (Size n, const Element *a, Size k, Size *work=0) | 
|   | Returns k_th order statistic of the array a of size n (k_th smallest element out of n elements).  
  | 
|   | 
| constexpr Double_t  | TMath::KUncertainty () | 
|   | Boltzmann's constant uncertainty.  
  | 
|   | 
| Double_t  | TMath::Landau (Double_t x, Double_t mpv=0, Double_t sigma=1, Bool_t norm=kFALSE) | 
|   | The LANDAU function.  
  | 
|   | 
| Double_t  | TMath::LandauI (Double_t x) | 
|   | Returns the value of the Landau distribution function at point x.  
  | 
|   | 
| Double_t  | TMath::LaplaceDist (Double_t x, Double_t alpha=0, Double_t beta=1) | 
|   | Computes the probability density function of Laplace distribution at point x, with location parameter alpha and shape parameter beta.  
  | 
|   | 
| Double_t  | TMath::LaplaceDistI (Double_t x, Double_t alpha=0, Double_t beta=1) | 
|   | Computes the distribution function of Laplace distribution at point x, with location parameter alpha and shape parameter beta.  
  | 
|   | 
| double  | ldexp (double, int) | 
|   | 
| Double_t  | TMath::Ldexp (Double_t x, Int_t exp) | 
|   | 
| constexpr Double_t  | TMath::Ln10 () | 
|   | Natural log of 10 (to convert log to ln)  
  | 
|   | 
| Double_t  | TMath::LnGamma (Double_t z) | 
|   | Computation of ln[gamma(z)] for all z.  
  | 
|   | 
| template<typename Iterator >  | 
| Iterator  | TMath::LocMax (Iterator first, Iterator last) | 
|   | Return index of array with the maximum element.  
  | 
|   | 
| template<typename T >  | 
| Long64_t  | TMath::LocMax (Long64_t n, const T *a) | 
|   | Return index of array with the maximum element.  
  | 
|   | 
| template<typename Iterator >  | 
| Iterator  | TMath::LocMin (Iterator first, Iterator last) | 
|   | Return index of array with the minimum element.  
  | 
|   | 
| template<typename T >  | 
| Long64_t  | TMath::LocMin (Long64_t n, const T *a) | 
|   | Return index of array with the minimum element.  
  | 
|   | 
| double  | log (double) | 
|   | 
| Double_t  | TMath::Log (Double_t x) | 
|   | 
| double  | log10 (double) | 
|   | 
| Double_t  | TMath::Log10 (Double_t x) | 
|   | 
| Double_t  | TMath::Log2 (Double_t x) | 
|   | 
| constexpr Double_t  | TMath::LogE () | 
|   | Base-10 log of e (to convert ln to log)  
  | 
|   | 
| Double_t  | TMath::LogNormal (Double_t x, Double_t sigma, Double_t theta=0, Double_t m=1) | 
|   | Computes the density of LogNormal distribution at point x.  
  | 
|   | 
| template<typename T >  | 
| T  | TMath::MaxElement (Long64_t n, const T *a) | 
|   | Return maximum of array a of length n.  
  | 
|   | 
| template<typename Iterator >  | 
| Double_t  | TMath::Mean (Iterator first, Iterator last) | 
|   | Return the weighted mean of an array defined by the iterators.  
  | 
|   | 
| template<typename Iterator , typename WeightIterator >  | 
| Double_t  | TMath::Mean (Iterator first, Iterator last, WeightIterator wfirst) | 
|   | Return the weighted mean of an array defined by the first and last iterators.  
  | 
|   | 
| template<typename T >  | 
| Double_t  | TMath::Mean (Long64_t n, const T *a, const Double_t *w=0) | 
|   | Return the weighted mean of an array a with length n.  
  | 
|   | 
| template<typename T >  | 
| Double_t  | TMath::Median (Long64_t n, const T *a, const Double_t *w=0, Long64_t *work=0) | 
|   | Return the median of the array a where each entry i has weight w[i] .  
  | 
|   | 
| template<typename T >  | 
| T  | TMath::MinElement (Long64_t n, const T *a) | 
|   | Return minimum of array a of length n.  
  | 
|   | 
| constexpr Double_t  | TMath::MWair () | 
|   | Molecular weight of dry air 1976 US Standard Atmosphere in \( kg kmol^{-1} \) or \( gm mol^{-1} \)  
  | 
|   | 
| constexpr Double_t  | TMath::Na () | 
|   | Avogadro constant (Avogadro's Number) in \( mol^{-1} \).  
  | 
|   | 
| constexpr Double_t  | TMath::NaUncertainty () | 
|   | Avogadro constant (Avogadro's Number) uncertainty.  
  | 
|   | 
| template<typename T >  | 
| Int_t  | TMath::Nint (T x) | 
|   | Round to nearest integer. Rounds half integers to the nearest even integer.  
  | 
|   | 
| template<typename T >  | 
| T *  | TMath::Normal2Plane (const T v1[3], const T v2[3], const T v3[3], T normal[3]) | 
|   | Calculate a normal vector of a plane.  
  | 
|   | 
| Double_t  | TMath::Normalize (Double_t v[3]) | 
|   | Normalize a vector v in place.  
  | 
|   | 
| Float_t  | TMath::Normalize (Float_t v[3]) | 
|   | Normalize a vector v in place.  
  | 
|   | 
| template<typename T >  | 
| T  | TMath::NormCross (const T v1[3], const T v2[3], T out[3]) | 
|   | Calculate the Normalized Cross Product of two vectors.  
  | 
|   | 
| Double_t  | TMath::NormQuantile (Double_t p) | 
|   | Computes quantiles for standard normal distribution N(0, 1) at probability p.  
  | 
|   | 
| Bool_t  | TMath::Permute (Int_t n, Int_t *a) | 
|   | Simple recursive algorithm to find the permutations of n natural numbers, not necessarily all distinct adapted from CERNLIB routine PERMU.  
  | 
|   | 
| constexpr Double_t  | TMath::Pi () | 
|   | 
| constexpr Double_t  | TMath::PiOver2 () | 
|   | 
| constexpr Double_t  | TMath::PiOver4 () | 
|   | 
| Double_t  | TMath::Poisson (Double_t x, Double_t par) | 
|   | Compute the Poisson distribution function for (x,par).  
  | 
|   | 
| Double_t  | TMath::PoissonI (Double_t x, Double_t par) | 
|   | Compute the Discrete Poisson distribution function for (x,par).  
  | 
|   | 
| double  | pow (double, double) | 
|   | 
| Double_t  | TMath::Power (Double_t x, Double_t y) | 
|   | 
| Double_t  | TMath::Power (Double_t x, Int_t y) | 
|   | 
| LongDouble_t  | TMath::Power (Long64_t x, Long64_t y) | 
|   | 
| LongDouble_t  | TMath::Power (LongDouble_t x, Long64_t y) | 
|   | 
| LongDouble_t  | TMath::Power (LongDouble_t x, LongDouble_t y) | 
|   | 
| Double_t  | TMath::Prob (Double_t chi2, Int_t ndf) | 
|   | Computation of the probability for a certain Chi-squared (chi2) and number of degrees of freedom (ndf).  
  | 
|   | 
| constexpr Double_t  | TMath::Qe () | 
|   | Elementary charge in \( C \) .  
  | 
|   | 
| constexpr Double_t  | TMath::QeUncertainty () | 
|   | Elementary charge uncertainty.  
  | 
|   | 
| void  | TMath::Quantiles (Int_t n, Int_t nprob, Double_t *x, Double_t *quantiles, Double_t *prob, Bool_t isSorted=kTRUE, Int_t *index=0, Int_t type=7) | 
|   | Computes sample quantiles, corresponding to the given probabilities.  
  | 
|   | 
| Double_t  | TMath::QuietNaN () | 
|   | Returns a quiet NaN as defined by IEEE 754  
  | 
|   | 
| constexpr Double_t  | TMath::R () | 
|   | Universal gas constant ( \( Na K \)) in \( J K^{-1} mol^{-1} \)  
  | 
|   | 
| constexpr Double_t  | TMath::RadToDeg () | 
|   | Conversion from radian to degree:  
  | 
|   | 
| constexpr Double_t  | TMath::Rgair () | 
|   | Dry Air Gas Constant (R / MWair) in \( J kg^{-1} K^{-1} \)  
  | 
|   | 
| template<typename Iterator >  | 
| Double_t  | TMath::RMS (Iterator first, Iterator last) | 
|   | Return the Standard Deviation of an array defined by the iterators.  
  | 
|   | 
| template<typename Iterator , typename WeightIterator >  | 
| Double_t  | TMath::RMS (Iterator first, Iterator last, WeightIterator wfirst) | 
|   | Return the weighted Standard Deviation of an array defined by the iterators.  
  | 
|   | 
| template<typename T >  | 
| Double_t  | TMath::RMS (Long64_t n, const T *a, const Double_t *w=0) | 
|   | Return the Standard Deviation of an array a with length n.  
  | 
|   | 
| Bool_t  | TMath::RootsCubic (const Double_t coef[4], Double_t &a, Double_t &b, Double_t &c) | 
|   | Calculates roots of polynomial of 3rd order a*x^3 + b*x^2 + c*x + d, where.  
  | 
|   | 
| constexpr Double_t  | TMath::RUncertainty () | 
|   | Universal gas constant uncertainty.  
  | 
|   | 
| constexpr Double_t  | TMath::Sigma () | 
|   | Stefan-Boltzmann constant in \( W m^{-2} K^{-4}\).  
  | 
|   | 
| constexpr Double_t  | TMath::SigmaUncertainty () | 
|   | Stefan-Boltzmann constant uncertainty.  
  | 
|   | 
| Double_t  | TMath::SignalingNaN () | 
|   | Returns a signaling NaN as defined by IEEE 754](http://en.wikipedia.org/wiki/NaN#Signaling_NaN)  
  | 
|   | 
| double  | sin (double) | 
|   | 
| Double_t  | TMath::Sin (Double_t) | 
|   | 
| double  | sinh (double) | 
|   | 
| Double_t  | TMath::SinH (Double_t) | 
|   | 
| Double_t  | TMath::Sq (Double_t x) | 
|   | 
| double  | sqrt (double) | 
|   | 
| Double_t  | TMath::Sqrt (Double_t x) | 
|   | 
| constexpr Double_t  | TMath::Sqrt2 () | 
|   | 
| template<typename Iterator >  | 
| Double_t  | TMath::StdDev (Iterator first, Iterator last) | 
|   | 
| template<typename Iterator , typename WeightIterator >  | 
| Double_t  | TMath::StdDev (Iterator first, Iterator last, WeightIterator wfirst) | 
|   | 
| template<typename T >  | 
| Double_t  | TMath::StdDev (Long64_t n, const T *a, const Double_t *w=0) | 
|   | 
| Double_t  | TMath::StruveH0 (Double_t x) | 
|   | Bessel function Y1(x) for positive x.  
  | 
|   | 
| Double_t  | TMath::StruveH1 (Double_t x) | 
|   | Struve functions of order 0.  
  | 
|   | 
| Double_t  | TMath::StruveL0 (Double_t x) | 
|   | Struve functions of order 1.  
  | 
|   | 
| Double_t  | TMath::StruveL1 (Double_t x) | 
|   | Modified Struve functions of order 0.  
  | 
|   | 
| Double_t  | TMath::Student (Double_t T, Double_t ndf) | 
|   | Computes density function for Student's t- distribution (the probability function (integral of density) is computed in StudentI).  
  | 
|   | 
| Double_t  | TMath::StudentI (Double_t T, Double_t ndf) | 
|   | Calculates the cumulative distribution function of Student's t-distribution second parameter stands for number of degrees of freedom, not for the number of samples if x has Student's t-distribution, the function returns the probability of x being less than T.  
  | 
|   | 
| Double_t  | TMath::StudentQuantile (Double_t p, Double_t ndf, Bool_t lower_tail=kTRUE) | 
|   | Computes quantiles of the Student's t-distribution 1st argument is the probability, at which the quantile is computed 2nd argument - the number of degrees of freedom of the Student distribution When the 3rd argument lower_tail is kTRUE (default)- the algorithm returns such x0, that.  
  | 
|   | 
| double  | tan (double) | 
|   | 
| Double_t  | TMath::Tan (Double_t) | 
|   | 
| double  | tanh (double) | 
|   | 
| Double_t  | TMath::TanH (Double_t) | 
|   | 
| constexpr Double_t  | TMath::TwoPi () | 
|   | 
| Double_t  | TMath::Vavilov (Double_t x, Double_t kappa, Double_t beta2) | 
|   | Returns the value of the Vavilov density function.  
  | 
|   | 
| Double_t  | TMath::VavilovI (Double_t x, Double_t kappa, Double_t beta2) | 
|   | Returns the value of the Vavilov distribution function.  
  | 
|   | 
| Double_t  | TMath::Voigt (Double_t x, Double_t sigma, Double_t lg, Int_t r=4) | 
|   | Computation of Voigt function (normalised).  
  | 
|   |