Logo ROOT  
Reference Guide
No Matches
df026_AsNumpyArrays.py File Reference


namespace  df026_AsNumpyArrays

Detailed Description

View in nbviewer Open in SWAN Read data from RDataFrame into Numpy arrays.

import ROOT
from sys import exit
# Let's create a simple dataframe with ten rows and two columns
df = ROOT.RDataFrame(10) \
.Define("x", "(int)rdfentry_") \
.Define("y", "1.f/(1.f+rdfentry_)")
# Next, we want to access the data from Python as Numpy arrays. To do so, the
# content of the dataframe is converted using the AsNumpy method. The returned
# object is a dictionary with the column names as keys and 1D numpy arrays with
# the content as values.
npy = df.AsNumpy()
print("Read-out of the full RDataFrame:\n{}\n".format(npy))
# Since reading out data to memory is expensive, always try to read-out only what
# is needed for your analysis. You can use all RDataFrame features to reduce your
# dataset, e.g., the Filter transformation. Furthermore, you can can pass to the
# AsNumpy method a whitelist of column names with the option `columns` or a blacklist
# with column names with the option `exclude`.
df2 = df.Filter("x>5")
npy2 = df2.AsNumpy()
print("Read-out of the filtered RDataFrame:\n{}\n".format(npy2))
npy3 = df2.AsNumpy(columns=["x"])
print("Read-out of the filtered RDataFrame with the columns option:\n{}\n".format(npy3))
npy4 = df2.AsNumpy(exclude=["x"])
print("Read-out of the filtered RDataFrame with the exclude option:\n{}\n".format(npy4))
# You can read-out all objects from ROOT files since these are wrapped by PyROOT
# in the Python world. However, be aware that objects other than fundamental types,
# such as complex C++ objects and not int or float, are costly to read-out.
// Inject the C++ class CustomObject in the C++ runtime.
class CustomObject {
int x = 42;
// Create a function that returns such an object. This is called to fill the dataframe.
CustomObject fill_object() { return CustomObject(); }
df3 = df.Define("custom_object", "fill_object()")
npy5 = df3.AsNumpy()
print("Read-out of C++ objects:\n{}\n".format(npy5["custom_object"]))
print("Access to all methods and data members of the C++ object:\nObject: {}\nAccess data member: custom_object.x = {}\n".format(
repr(npy5["custom_object"][0]), npy5["custom_object"][0].x))
# Note that you can pass the object returned by AsNumpy directly to pandas.DataFrame
# including any complex C++ object that may be read-out.
import pandas
print("Please install the pandas package to run this section of the tutorial.")
df = pandas.DataFrame(npy5)
print("Content of the ROOT.RDataFrame as pandas.DataFrame:\n{}\n".format(df))
ROOT's RDataFrame offers a high level interface for analyses of data stored in TTrees,...
December 2018
Stefan Wunsch (KIT, CERN)

Definition in file df026_AsNumpyArrays.py.