Logo ROOT  
Reference Guide
 
Loading...
Searching...
No Matches
Plane3D.h
Go to the documentation of this file.
1// @(#)root/mathcore:$Id$
2// Authors: L. Moneta 12/2005
3
4/**********************************************************************
5 * *
6 * Copyright (c) 2005 , LCG ROOT MathLib Team *
7 * *
8 * *
9 **********************************************************************/
10
11// Header file for class LorentzVector
12//
13// Created by: moneta at Fri Dec 02 2005
14//
15// Last update: $Id$
16//
17#ifndef ROOT_Math_GenVector_Plane3D
18#define ROOT_Math_GenVector_Plane3D 1
19
20#include <type_traits>
21
24
25
26
27namespace ROOT {
28
29namespace Math {
30
31namespace Impl {
32
33//_______________________________________________________________________________
34/**
35 Class describing a geometrical plane in 3 dimensions.
36 A Plane3D is a 2 dimensional surface spanned by two linearly independent vectors.
37 The plane is described by the equation
38 \f$ a*x + b*y + c*z + d = 0 \f$ where (a,b,c) are the components of the
39 normal vector to the plane \f$ n = (a,b,c) \f$ and \f$ d = - n \dot x \f$, where x is any point
40 belonging to plane.
41 More information on the mathematics describing a plane in 3D is available on
42 <A HREF=http://mathworld.wolfram.com/Plane.html>MathWord</A>.
43 The Plane3D class contains the 4 scalar values in T which represent the
44 four coefficients, fA, fB, fC, fD. fA, fB, fC are the normal components normalized to 1,
45 i.e. fA**2 + fB**2 + fC**2 = 1
46
47 @ingroup GenVector
48*/
49
50template <typename T = double>
51class Plane3D {
52
53public:
54 // ------ ctors ------
55
56 typedef T Scalar;
57
60
61 /**
62 default constructor create plane z = 0
63 */
64 Plane3D() : fA(0), fB(0), fC(1), fD(0) {}
65
66 /**
67 generic constructors from the four scalar values describing the plane
68 according to the equation ax + by + cz + d = 0
69 \param a scalar value
70 \param b scalar value
71 \param c scalar value
72 \param d sxcalar value
73 */
74 Plane3D(const Scalar &a, const Scalar &b, const Scalar &c, const Scalar &d) : fA(a), fB(b), fC(c), fD(d)
75 {
76 // renormalize a,b,c to unit
77 Normalize();
78 }
79
80 /**
81 constructor a Plane3D from a normal vector and a point coplanar to the plane
82 \param n normal expressed as a ROOT::Math::DisplacementVector3D<Cartesian3D<T> >
83 \param p point expressed as a ROOT::Math::PositionVector3D<Cartesian3D<T> >
84 */
85 Plane3D(const Vector &n, const Point &p) { BuildFromVecAndPoint(n, p); }
86
87 /**
88 Construct from a generic DisplacementVector3D (normal vector) and PositionVector3D (point coplanar to
89 the plane)
90 \param n normal expressed as a generic ROOT::Math::DisplacementVector3D
91 \param p point expressed as a generic ROOT::Math::PositionVector3D
92 */
93 template <class T1, class T2, class U>
95 {
97 }
98
99 /**
100 constructor from three Cartesian point belonging to the plane
101 \param p1 point1 expressed as a generic ROOT::Math::PositionVector3D
102 \param p2 point2 expressed as a generic ROOT::Math::PositionVector3D
103 \param p3 point3 expressed as a generic ROOT::Math::PositionVector3D
104 */
105 Plane3D(const Point &p1, const Point &p2, const Point &p3) { BuildFrom3Points(p1, p2, p3); }
106
107 /**
108 constructor from three generic point belonging to the plane
109 \param p1 point1 expressed as ROOT::Math::DisplacementVector3D<Cartesian3D<T> >
110 \param p2 point2 expressed as ROOT::Math::DisplacementVector3D<Cartesian3D<T> >
111 \param p3 point3 expressed as ROOT::Math::DisplacementVector3D<Cartesian3D<T> >
112 */
113 template <class T1, class T2, class T3, class U>
115 {
116 BuildFrom3Points(Point(p1.X(), p1.Y(), p1.Z()), Point(p2.X(), p2.Y(), p2.Z()), Point(p3.X(), p3.Y(), p3.Z()));
117 }
118
119 // compiler-generated copy ctor and dtor are fine.
120 Plane3D(const Plane3D &) = default;
121
122 // ------ assignment ------
123
124 /**
125 Assignment operator from other Plane3D class
126 */
127 Plane3D &operator=(const Plane3D &) = default;
128
129 /**
130 Return the a coefficient of the plane equation \f$ a*x + b*y + c*z + d = 0 \f$. It is also the
131 x-component of the vector perpendicular to the plane.
132 */
133 Scalar A() const { return fA; }
134
135 /**
136 Return the b coefficient of the plane equation \f$ a*x + b*y + c*z + d = 0 \f$. It is also the
137 y-component of the vector perpendicular to the plane
138 */
139 Scalar B() const { return fB; }
140
141 /**
142 Return the c coefficient of the plane equation \f$ a*x + b*y + c*z + d = 0 \f$. It is also the
143 z-component of the vector perpendicular to the plane
144 */
145 Scalar C() const { return fC; }
146
147 /**
148 Return the d coefficient of the plane equation \f$ a*x + b*y + c*z + d = 0 \f$. It is also
149 the distance from the origin (HesseDistance)
150 */
151 Scalar D() const { return fD; }
152
153 /**
154 Return normal vector to the plane as Cartesian DisplacementVector
155 */
156 Vector Normal() const { return Vector(fA, fB, fC); }
157
158 /**
159 Return the Hesse Distance (distance from the origin) of the plane or
160 the d coefficient expressed in normalize form
161 */
162 Scalar HesseDistance() const { return fD; }
163
164 /**
165 Return the signed distance to a Point.
166 The distance is signed positive if the Point is in the same side of the
167 normal vector to the plane.
168 \param p Point expressed in Cartesian Coordinates
169 */
170 Scalar Distance(const Point &p) const { return fA * p.X() + fB * p.Y() + fC * p.Z() + fD; }
171
172 /**
173 Return the distance to a Point described with generic coordinates
174 \param p Point expressed as generic ROOT::Math::PositionVector3D
175 */
176 template <class T1, class U>
178 {
179 return Distance(Point(p.X(), p.Y(), p.Z()));
180 }
181
182 /**
183 Return the projection of a Cartesian point to a plane
184 \param p Point expressed as PositionVector3D<Cartesian3D<T> >
185 */
187 {
188 const Scalar d = Distance(p);
189 return XYZPoint(p.X() - fA * d, p.Y() - fB * d, p.Z() - fC * d);
190 }
191
192 /**
193 Return the projection of a point to a plane
194 \param p Point expressed as generic ROOT::Math::PositionVector3D
195 */
196 template <class T1, class U>
198 {
199 const Point pxyz = ProjectOntoPlane(Point(p.X(), p.Y(), p.Z()));
200 return PositionVector3D<T, U>(pxyz.X(), pxyz.Y(), pxyz.Z());
201 }
202
203 // ------------------- Equality -----------------
204
205 /**
206 Exact equality
207 */
208 bool operator==(const Plane3D &rhs) const { return (fA == rhs.fA && fB == rhs.fB && fC == rhs.fC && fD == rhs.fD); }
209 bool operator!=(const Plane3D &rhs) const { return !(operator==(rhs)); }
210
211protected:
212 /**
213 Normalize the normal (a,b,c) plane components
214 */
215 template <typename SCALAR = T, typename std::enable_if<std::is_arithmetic<SCALAR>::value>::type * = nullptr>
217 {
218 // normalize the plane
219 using std::sqrt;
220 const SCALAR s = sqrt(fA * fA + fB * fB + fC * fC);
221 // what to do if s = 0 ?
222 if (s == SCALAR(0)) {
223 fD = SCALAR(0);
224 } else {
225 const SCALAR w = Scalar(1) / s;
226 fA *= w;
227 fB *= w;
228 fC *= w;
229 fD *= w;
230 }
231 }
232
233 /**
234 Normalize the normal (a,b,c) plane components
235 */
236 template <typename SCALAR = T, typename std::enable_if<!std::is_arithmetic<SCALAR>::value>::type * = nullptr>
238 {
239 // normalize the plane
240 using std::sqrt;
241 SCALAR s = sqrt(fA * fA + fB * fB + fC * fC);
242 // what to do if s = 0 ?
243 const auto m = (s == SCALAR(0));
244 // set zero entries to 1 in the vector to avoid /0 later on
245 s(m) = SCALAR(1);
246 fD(m) = SCALAR(0);
247 const SCALAR w = SCALAR(1) / s;
248 fA *= w;
249 fB *= w;
250 fC *= w;
251 fD *= w;
252 }
253
254private:
255 // internal method to construct class from a vector and a point
256 void BuildFromVecAndPoint(const Vector &n, const Point &p)
257 {
258 // build from a normal vector and a point
259 fA = n.X();
260 fB = n.Y();
261 fC = n.Z();
262 fD = -n.Dot(p);
263 Normalize();
264 }
265
266 // internal method to construct class from 3 points
267 void BuildFrom3Points(const Point &p1, const Point &p2, const Point &p3)
268 {
269 // plane from thre points
270 // normal is (x3-x1) cross (x2 -x1)
271 const Vector n = (p2 - p1).Cross(p3 - p1);
272 fA = n.X();
273 fB = n.Y();
274 fC = n.Z();
275 fD = -n.Dot(p1);
276 Normalize();
277 }
278
279 // plane data members the four scalar which satisfies fA*x + fB*y + fC*z + fD = 0
280 // for every point (x,y,z) belonging to the plane.
281 // fA**2 + fB**2 + fC** =1 plane is stored in normalized form
286
287 }; // Plane3D<>
288
289 /**
290 Stream Output and Input
291 */
292 // TODO - I/O should be put in the manipulator form
293 template <typename T>
294 std::ostream &operator<<(std::ostream &os, const Plane3D<T> &p)
295 {
296 os << "\n"
297 << p.Normal().X() << " " << p.Normal().Y() << " " << p.Normal().Z() << " " << p.HesseDistance() << "\n";
298 return os;
299 }
300
301 } // end namespace Impl
302
303 // typedefs for double and float versions
306
307} // end namespace Math
308
309} // end namespace ROOT
310
311
312#endif
#define d(i)
Definition RSha256.hxx:102
#define b(i)
Definition RSha256.hxx:100
#define c(i)
Definition RSha256.hxx:101
#define a(i)
Definition RSha256.hxx:99
TBuffer & operator<<(TBuffer &buf, const Tmpl *obj)
Definition TBuffer.h:399
int type
Definition TGX11.cxx:121
DefaultCoordinateSystemTag Default tag for identifying any coordinate system.
Class describing a generic displacement vector in 3 dimensions.
Scalar X() const
Cartesian X, converting if necessary from internal coordinate system.
Scalar Y() const
Cartesian Y, converting if necessary from internal coordinate system.
Scalar Z() const
Cartesian Z, converting if necessary from internal coordinate system.
Class describing a geometrical plane in 3 dimensions.
Definition Plane3D.h:51
Plane3D(const Scalar &a, const Scalar &b, const Scalar &c, const Scalar &d)
generic constructors from the four scalar values describing the plane according to the equation ax + ...
Definition Plane3D.h:74
Vector Normal() const
Return normal vector to the plane as Cartesian DisplacementVector.
Definition Plane3D.h:156
Plane3D & operator=(const Plane3D &)=default
Assignment operator from other Plane3D class.
Plane3D()
default constructor create plane z = 0
Definition Plane3D.h:64
bool operator!=(const Plane3D &rhs) const
Definition Plane3D.h:209
DisplacementVector3D< Cartesian3D< T >, DefaultCoordinateSystemTag > Vector
Definition Plane3D.h:58
Point ProjectOntoPlane(const Point &p) const
Return the projection of a Cartesian point to a plane.
Definition Plane3D.h:186
PositionVector3D< T1, U > ProjectOntoPlane(const PositionVector3D< T1, U > &p) const
Return the projection of a point to a plane.
Definition Plane3D.h:197
Scalar HesseDistance() const
Return the Hesse Distance (distance from the origin) of the plane or the d coefficient expressed in n...
Definition Plane3D.h:162
Scalar C() const
Return the c coefficient of the plane equation .
Definition Plane3D.h:145
Plane3D(const Vector &n, const Point &p)
constructor a Plane3D from a normal vector and a point coplanar to the plane
Definition Plane3D.h:85
Plane3D(const PositionVector3D< T1, U > &p1, const PositionVector3D< T2, U > &p2, const PositionVector3D< T3, U > &p3)
constructor from three generic point belonging to the plane
Definition Plane3D.h:114
Scalar A() const
Return the a coefficient of the plane equation .
Definition Plane3D.h:133
Scalar D() const
Return the d coefficient of the plane equation .
Definition Plane3D.h:151
Scalar Distance(const Point &p) const
Return the signed distance to a Point.
Definition Plane3D.h:170
Scalar B() const
Return the b coefficient of the plane equation .
Definition Plane3D.h:139
void Normalize()
Normalize the normal (a,b,c) plane components.
Definition Plane3D.h:216
PositionVector3D< Cartesian3D< T >, DefaultCoordinateSystemTag > Point
Definition Plane3D.h:59
bool operator==(const Plane3D &rhs) const
Exact equality.
Definition Plane3D.h:208
void BuildFromVecAndPoint(const Vector &n, const Point &p)
Definition Plane3D.h:256
Plane3D(const Plane3D &)=default
Plane3D(const DisplacementVector3D< T1, U > &n, const PositionVector3D< T2, U > &p)
Construct from a generic DisplacementVector3D (normal vector) and PositionVector3D (point coplanar to...
Definition Plane3D.h:94
void BuildFrom3Points(const Point &p1, const Point &p2, const Point &p3)
Definition Plane3D.h:267
Plane3D(const Point &p1, const Point &p2, const Point &p3)
constructor from three Cartesian point belonging to the plane
Definition Plane3D.h:105
Scalar Distance(const PositionVector3D< T1, U > &p) const
Return the distance to a Point described with generic coordinates.
Definition Plane3D.h:177
Class describing a generic position vector (point) in 3 dimensions.
Scalar Y() const
Cartesian Y, converting if necessary from internal coordinate system.
Scalar Z() const
Cartesian Z, converting if necessary from internal coordinate system.
Scalar X() const
Cartesian X, converting if necessary from internal coordinate system.
SVector< T, 3 > Cross(const SVector< T, 3 > &lhs, const SVector< T, 3 > &rhs)
Vector Cross Product (only for 3-dim vectors) .
Definition Functions.h:323
const Int_t n
Definition legend1.C:16
Namespace for new Math classes and functions.
Impl::Plane3D< double > Plane3D
Definition Plane3D.h:304
PositionVector3D< Cartesian3D< double >, DefaultCoordinateSystemTag > XYZPoint
3D Point based on the cartesian coordinates x,y,z in double precision
Definition Point3Dfwd.h:38
VecExpr< UnaryOp< Sqrt< T >, VecExpr< A, T, D >, T >, T, D > sqrt(const VecExpr< A, T, D > &rhs)
Impl::Plane3D< float > Plane3DF
Definition Plane3D.h:305
tbb::task_arena is an alias of tbb::interface7::task_arena, which doesn't allow to forward declare tb...
auto * m
Definition textangle.C:8