45 const RooArgSet& projDeps,
bool extended =
false,
67 std::unique_ptr<RooBatchCompute::RunContext> &evalData,
68 RooArgSet *normSet,
bool weightSq, std::size_t stepSize,
69 std::size_t firstEvent, std::size_t lastEvent);
71 bool weightSq, std::size_t stepSize, std::size_t firstEvent,
72 std::size_t lastEvent);
91 mutable std::vector<Double_t>
_binw ;
93 mutable std::unique_ptr<RooBatchCompute::RunContext>
_evalData;
#define ClassDef(name, id)
The Kahan summation is a compensated summation algorithm, which significantly reduces numerical error...
RooAbsData is the common abstract base class for binned and unbinned datasets.
RooAbsOptTestStatistic is the abstract base class for test statistics objects that evaluate a functio...
RooAbsReal is the common abstract base class for objects that represent a real value and implements f...
RooAbsTestStatistic is the abstract base class for all test statistics.
RooArgSet is a container object that can hold multiple RooAbsArg objects.
RooCmdArg is a named container for two doubles, two integers two object points and three string point...
static const RooCmdArg & none()
Return reference to null argument.
Class RooNLLVar implements a -log(likelihood) calculation from a dataset and a PDF.
ComputeResult computeScalar(std::size_t stepSize, std::size_t firstEvent, std::size_t lastEvent) const
virtual TObject * clone(const char *newname) const
void applyWeightSquared(bool flag)
Disables or enables the usage of squared weights.
RooRealSumPdf * _binnedPdf
static RooNLLVar::ComputeResult computeScalarFunc(const RooAbsPdf *pdfClone, RooAbsData *dataClone, RooArgSet *normSet, bool weightSq, std::size_t stepSize, std::size_t firstEvent, std::size_t lastEvent)
ROOT::Math::KahanSum< double > _offsetSaveW2
static RooNLLVar::ComputeResult computeBatchedFunc(const RooAbsPdf *pdfClone, RooAbsData *dataClone, std::unique_ptr< RooBatchCompute::RunContext > &evalData, RooArgSet *normSet, bool weightSq, std::size_t stepSize, std::size_t firstEvent, std::size_t lastEvent)
static RooArgSet _emptySet
void batchMode(bool on=true)
virtual Bool_t processEmptyDataSets() const
std::pair< ROOT::Math::KahanSum< double >, double > ComputeResult
std::vector< Double_t > _binw
Double_t defaultErrorLevel() const
virtual RooAbsTestStatistic * create(const char *name, const char *title, RooAbsReal &pdf, RooAbsData &adata, const RooArgSet &projDeps, RooAbsTestStatistic::Configuration const &cfg)
Create a test statistic using several properties of the current instance.
virtual Double_t evaluatePartition(std::size_t firstEvent, std::size_t lastEvent, std::size_t stepSize) const
Calculate and return likelihood on subset of data.
std::unique_ptr< RooBatchCompute::RunContext > _evalData
ComputeResult computeBatched(std::size_t stepSize, std::size_t firstEvent, std::size_t lastEvent) const
Compute probabilites of all data events.
The class RooRealSumPdf implements a PDF constructed from a sum of functions:
Mother of all ROOT objects.
Namespace for dispatching RooFit computations to various backends.