Loading [MathJax]/extensions/tex2jax.js
Logo ROOT  
Reference Guide
 
All Classes Namespaces Files Functions Variables Typedefs Enumerations Enumerator Properties Friends Macros Modules Pages
Loading...
Searching...
No Matches
TMVACrossValidationApplication.C File Reference

Detailed Description

View in nbviewer Open in SWAN This macro provides an example of how to use TMVA for k-folds cross evaluation in application.

This requires that CrossValidation was run with a deterministic split, such as "...:splitExpr=int([eventID])%int([numFolds]):...".

  • Project : TMVA - a ROOT-integrated toolkit for multivariate data analysis
  • Package : TMVA
  • Root Macro: TMVACrossValidationApplication
: Booking "BDTG" of type "CrossValidation" from dataset/weights/TMVACrossValidation_BDTG.weights.xml.
: Reading weight file: dataset/weights/TMVACrossValidation_BDTG.weights.xml
<HEADER> DataSetInfo : [Default] : Added class "Signal"
<HEADER> DataSetInfo : [Default] : Added class "Background"
: Reading weightfile: dataset/weights/TMVACrossValidation_BDTG_fold1.weights.xml
: Reading weight file: dataset/weights/TMVACrossValidation_BDTG_fold1.weights.xml
: Reading weightfile: dataset/weights/TMVACrossValidation_BDTG_fold2.weights.xml
: Reading weight file: dataset/weights/TMVACrossValidation_BDTG_fold2.weights.xml
: Booked classifier "BDTG" of type: "CrossValidation"
: Booking "Fisher" of type "CrossValidation" from dataset/weights/TMVACrossValidation_Fisher.weights.xml.
: Reading weight file: dataset/weights/TMVACrossValidation_Fisher.weights.xml
: Reading weightfile: dataset/weights/TMVACrossValidation_Fisher_fold1.weights.xml
: Reading weight file: dataset/weights/TMVACrossValidation_Fisher_fold1.weights.xml
: Reading weightfile: dataset/weights/TMVACrossValidation_Fisher_fold2.weights.xml
: Reading weight file: dataset/weights/TMVACrossValidation_Fisher_fold2.weights.xml
: Booked classifier "Fisher" of type: "CrossValidation"
: Rebuilding Dataset Default
(int) 0
#include <cstdlib>
#include <iostream>
#include <map>
#include <string>
#include "TChain.h"
#include "TFile.h"
#include "TTree.h"
#include "TString.h"
#include "TObjString.h"
#include "TSystem.h"
#include "TROOT.h"
#include "TMVA/Factory.h"
#include "TMVA/Tools.h"
#include "TMVA/TMVAGui.h"
// Helper function to load data into TTrees.
TTree *fillTree(TTree * tree, Int_t nPoints, Double_t offset, Double_t scale, UInt_t seed = 100)
{
TRandom3 rng(seed);
Float_t x = 0;
Float_t y = 0;
Int_t eventID = 0;
tree->SetBranchAddress("x", &x);
tree->SetBranchAddress("y", &y);
tree->SetBranchAddress("eventID", &eventID);
for (Int_t n = 0; n < nPoints; ++n) {
x = rng.Gaus(offset, scale);
y = rng.Gaus(offset, scale);
// For our simple example it is enough that the id's are uniformly
// distributed and independent of the data.
++eventID;
tree->Fill();
}
// Important: Disconnects the tree from the memory locations of x and y.
tree->ResetBranchAddresses();
return tree;
}
int TMVACrossValidationApplication()
{
// This loads the library
// Set up the TMVA::Reader
TMVA::Reader *reader = new TMVA::Reader("!Color:!Silent:!V");
Int_t eventID;
reader->AddVariable("x", &x);
reader->AddVariable("y", &y);
reader->AddSpectator("eventID", &eventID);
// Book the serialised methods
TString jobname("TMVACrossValidation");
{
TString methodName = "BDTG";
TString weightfile = TString("dataset/weights/") + jobname + "_" + methodName + TString(".weights.xml");
Bool_t weightfileExists = (gSystem->AccessPathName(weightfile) == kFALSE);
if (weightfileExists) {
reader->BookMVA(methodName, weightfile);
} else {
std::cout << "Weightfile for method " << methodName << " not found."
" Did you run TMVACrossValidation with a specified"
" splitExpr?" << std::endl;
exit(0);
}
}
{
TString methodName = "Fisher";
TString weightfile = TString("dataset/weights/") + jobname + "_" + methodName + TString(".weights.xml");
Bool_t weightfileExists = (gSystem->AccessPathName(weightfile) == kFALSE);
if (weightfileExists) {
reader->BookMVA(methodName, weightfile);
} else {
std::cout << "Weightfile for method " << methodName << " not found."
" Did you run TMVACrossValidation with a specified"
" splitExpr?" << std::endl;
exit(0);
}
}
// Load data
TTree *tree = new TTree();
tree->Branch("x", &x, "x/F");
tree->Branch("y", &y, "y/F");
tree->Branch("eventID", &eventID, "eventID/I");
fillTree(tree, 1000, 1.0, 1.0, 100);
fillTree(tree, 1000, -1.0, 1.0, 101);
tree->SetBranchAddress("x", &x);
tree->SetBranchAddress("y", &y);
tree->SetBranchAddress("eventID", &eventID);
// Prepare histograms
Int_t nbin = 100;
TH1F histBDTG{"BDTG", "BDTG", nbin, -1, 1};
TH1F histFisher{"Fisher", "Fisher", nbin, -1, 1};
// Evaluate classifiers
for (Long64_t ievt = 0; ievt < tree->GetEntries(); ievt++) {
tree->GetEntry(ievt);
Double_t valBDTG = reader->EvaluateMVA("BDTG");
Double_t valFisher = reader->EvaluateMVA("Fisher");
histBDTG.Fill(valBDTG);
histFisher.Fill(valFisher);
}
tree->ResetBranchAddresses();
delete tree;
if (!gROOT->IsBatch()) {
auto c = new TCanvas();
c->Divide(2,1);
c->cd(1);
histBDTG.DrawClone();
c->cd(2);
histFisher.DrawClone();
}
else
{ // Write histograms to output file
TFile *target = new TFile("TMVACrossEvaluationApp.root", "RECREATE");
histBDTG.Write();
histFisher.Write();
target->Close();
delete target;
}
delete reader;
return 0;
}
//
// This is used if the macro is compiled. If run through ROOT with
// `root -l -b -q MACRO.C` or similar it is unused.
//
int main(int argc, char **argv)
{
TMVACrossValidationApplication();
}
int main()
Definition Prototype.cxx:12
#define c(i)
Definition RSha256.hxx:101
int Int_t
Definition RtypesCore.h:45
unsigned int UInt_t
Definition RtypesCore.h:46
const Bool_t kFALSE
Definition RtypesCore.h:101
bool Bool_t
Definition RtypesCore.h:63
double Double_t
Definition RtypesCore.h:59
long long Long64_t
Definition RtypesCore.h:80
float Float_t
Definition RtypesCore.h:57
#define gROOT
Definition TROOT.h:404
R__EXTERN TSystem * gSystem
Definition TSystem.h:559
The Canvas class.
Definition TCanvas.h:23
A ROOT file is a suite of consecutive data records (TKey instances) with a well defined format.
Definition TFile.h:54
void Close(Option_t *option="") override
Close a file.
Definition TFile.cxx:899
1-D histogram with a float per channel (see TH1 documentation)}
Definition TH1.h:575
The Reader class serves to use the MVAs in a specific analysis context.
Definition Reader.h:64
Double_t EvaluateMVA(const std::vector< Float_t > &, const TString &methodTag, Double_t aux=0)
Evaluate a std::vector<float> of input data for a given method The parameter aux is obligatory for th...
Definition Reader.cxx:468
IMethod * BookMVA(const TString &methodTag, const TString &weightfile)
read method name from weight file
Definition Reader.cxx:368
void AddSpectator(const TString &expression, Float_t *)
Add a float spectator or expression to the reader.
Definition Reader.cxx:321
void AddVariable(const TString &expression, Float_t *)
Add a float variable or expression to the reader.
Definition Reader.cxx:303
static Tools & Instance()
Definition Tools.cxx:71
Random number generator class based on M.
Definition TRandom3.h:27
Basic string class.
Definition TString.h:136
virtual Bool_t AccessPathName(const char *path, EAccessMode mode=kFileExists)
Returns FALSE if one can access a file using the specified access mode.
Definition TSystem.cxx:1296
A TTree represents a columnar dataset.
Definition TTree.h:79
Double_t y[n]
Definition legend1.C:17
Double_t x[n]
Definition legend1.C:17
const Int_t n
Definition legend1.C:16
Definition tree.py:1
Author
Kim Albertsson (adapted from code originally by Andreas Hoecker)

Definition in file TMVACrossValidationApplication.C.