Definition at line 117 of file DecisionTreeNode.h.
Public Member Functions | |
DecisionTreeNode () | |
constructor of an essentially "empty" node floating in space | |
DecisionTreeNode (const DecisionTreeNode &n, DecisionTreeNode *parent=NULL) | |
copy constructor of a node. | |
DecisionTreeNode (Node *p, char pos) | |
constructor of a daughter node as a daughter of 'p' | |
virtual | ~DecisionTreeNode () |
destructor | |
virtual void | AddAttributesToNode (void *node) const |
add attribute to xml | |
virtual void | AddContentToNode (std::stringstream &s) const |
adding attributes to tree node (well, was used in BinarySearchTree, and somehow I guess someone programmed it such that we need this in this tree too, although we don't..) | |
void | AddToSumTarget (Float_t t) |
void | AddToSumTarget2 (Float_t t2) |
void | ClearNodeAndAllDaughters () |
clear the nodes (their S/N, Nevents etc), just keep the structure of the tree | |
virtual Node * | CreateNode () const |
Double_t | GetAlpha () const |
Double_t | GetAlphaMinSubtree () const |
Double_t | GetCC () const |
Bool_t | GetCutType (void) const |
Float_t | GetCutValue (void) const |
Double_t | GetFisherCoeff (Int_t ivar) const |
virtual DecisionTreeNode * | GetLeft () const |
Float_t | GetNBkgEvents (void) const |
Float_t | GetNBkgEvents_unboosted (void) const |
Float_t | GetNBkgEvents_unweighted (void) const |
Double_t | GetNBValidation () const |
Float_t | GetNEvents (void) const |
Float_t | GetNEvents_unboosted (void) const |
Float_t | GetNEvents_unweighted (void) const |
UInt_t | GetNFisherCoeff () const |
Double_t | GetNodeR () const |
Int_t | GetNodeType (void) const |
Float_t | GetNSigEvents (void) const |
Float_t | GetNSigEvents_unboosted (void) const |
Float_t | GetNSigEvents_unweighted (void) const |
Double_t | GetNSValidation () const |
Int_t | GetNTerminal () const |
virtual DecisionTreeNode * | GetParent () const |
Float_t | GetPurity (void) const |
Float_t | GetResponse (void) const |
virtual DecisionTreeNode * | GetRight () const |
Float_t | GetRMS (void) const |
Float_t | GetSampleMax (UInt_t ivar) const |
return the maximum of variable ivar from the training sample that pass/end up in this node | |
Float_t | GetSampleMin (UInt_t ivar) const |
return the minimum of variable ivar from the training sample that pass/end up in this node | |
Short_t | GetSelector () const |
Float_t | GetSeparationGain (void) const |
Float_t | GetSeparationIndex (void) const |
Double_t | GetSubTreeR () const |
Float_t | GetSumTarget () const |
Float_t | GetSumTarget2 () const |
virtual Bool_t | GoesLeft (const Event &) const |
test event if it descends the tree at this node to the left | |
virtual Bool_t | GoesRight (const Event &) const |
test event if it descends the tree at this node to the right | |
void | IncrementNBkgEvents (Float_t b) |
void | IncrementNBkgEvents_unweighted () |
void | IncrementNEvents (Float_t nev) |
void | IncrementNEvents_unweighted () |
void | IncrementNSigEvents (Float_t s) |
void | IncrementNSigEvents_unweighted () |
Bool_t | IsTerminal () const |
virtual void | Print (std::ostream &os) const |
print the node | |
void | PrintPrune (std::ostream &os) const |
printout of the node (can be read in with ReadDataRecord) | |
virtual void | PrintRec (std::ostream &os) const |
recursively print the node and its daughters (--> print the 'tree') | |
void | PrintRecPrune (std::ostream &os) const |
recursive printout of the node and its daughters | |
virtual void | ReadAttributes (void *node, UInt_t tmva_Version_Code=TMVA_VERSION_CODE) |
virtual void | ReadContent (std::stringstream &s) |
reading attributes from tree node (well, was used in BinarySearchTree, and somehow I guess someone programmed it such that we need this in this tree too, although we don't..) | |
virtual Bool_t | ReadDataRecord (std::istream &is, UInt_t tmva_Version_Code=TMVA_VERSION_CODE) |
Read the data block. | |
void | ResetValidationData () |
temporary stored node values (number of events, etc.) that originate not from the training but from the validation data (used in pruning) | |
void | SetAlpha (Double_t alpha) |
void | SetAlphaMinSubtree (Double_t g) |
void | SetCC (Double_t cc) |
void | SetCutType (Bool_t t) |
void | SetCutValue (Float_t c) |
void | SetFisherCoeff (Int_t ivar, Double_t coeff) |
set fisher coefficients | |
virtual void | SetLeft (Node *l) |
void | SetNBkgEvents (Float_t b) |
void | SetNBkgEvents_unboosted (Float_t b) |
void | SetNBkgEvents_unweighted (Float_t b) |
void | SetNBValidation (Double_t b) |
void | SetNEvents (Float_t nev) |
void | SetNEvents_unboosted (Float_t nev) |
void | SetNEvents_unweighted (Float_t nev) |
void | SetNFisherCoeff (Int_t nvars) |
void | SetNodeR (Double_t r) |
void | SetNodeType (Int_t t) |
void | SetNSigEvents (Float_t s) |
void | SetNSigEvents_unboosted (Float_t s) |
void | SetNSigEvents_unweighted (Float_t s) |
void | SetNSValidation (Double_t s) |
void | SetNTerminal (Int_t n) |
virtual void | SetParent (Node *p) |
void | SetPurity (void) |
return the S/(S+B) (purity) for the node REM: even if nodes with purity 0.01 are very PURE background nodes, they still get a small value of the purity. | |
void | SetResponse (Float_t r) |
virtual void | SetRight (Node *r) |
void | SetRMS (Float_t r) |
void | SetSampleMax (UInt_t ivar, Float_t xmax) |
set the maximum of variable ivar from the training sample that pass/end up in this node | |
void | SetSampleMin (UInt_t ivar, Float_t xmin) |
set the minimum of variable ivar from the training sample that pass/end up in this node | |
void | SetSelector (Short_t i) |
void | SetSeparationGain (Float_t sep) |
void | SetSeparationIndex (Float_t sep) |
void | SetSubTreeR (Double_t r) |
void | SetSumTarget (Float_t t) |
void | SetSumTarget2 (Float_t t2) |
void | SetTerminal (Bool_t s=kTRUE) |
Public Member Functions inherited from TMVA::Node | |
Node () | |
Node (const Node &n) | |
copy constructor, make sure you don't just copy the pointer to the node, but that the parents/daughters are initialized to 0 (and set by the copy constructors of the derived classes | |
Node (Node *p, char pos) | |
constructor of a daughter node as a daughter of 'p' | |
virtual | ~Node () |
node destructor | |
void * | AddXMLTo (void *parent) const |
add attributes to XML | |
Int_t | CountMeAndAllDaughters () const |
recursively go through the part of the tree below this node and count all daughters | |
int | GetCount () |
returns the global number of instantiated nodes | |
UInt_t | GetDepth () const |
virtual TMVA::BinaryTree * | GetParentTree () const |
char | GetPos () const |
void | ReadXML (void *node, UInt_t tmva_Version_Code=TMVA_VERSION_CODE) |
read attributes from XML | |
void | SetDepth (UInt_t d) |
virtual void | SetParentTree (TMVA::BinaryTree *t) |
void | SetPos (char s) |
Static Public Member Functions | |
static UInt_t | GetTmvaVersionCode () |
static bool | IsTraining () |
static void | SetIsTraining (bool on) |
static void | SetTmvaVersionCode (UInt_t code) |
Static Protected Member Functions | |
static MsgLogger & | Log () |
Protected Attributes | |
Bool_t | fCutType |
Float_t | fCutValue |
std::vector< Double_t > | fFisherCoeff |
Bool_t | fIsTerminalNode |
Int_t | fNodeType |
Float_t | fPurity |
Float_t | fResponse |
Float_t | fRMS |
Short_t | fSelector |
DTNodeTrainingInfo * | fTrainInfo |
flag to set node as terminal (i.e., without deleting its descendants) | |
Protected Attributes inherited from TMVA::Node | |
UInt_t | fDepth |
Node * | fLeft |
Node * | fParent |
BinaryTree * | fParentTree |
char | fPos |
Node * | fRight |
Static Protected Attributes | |
static bool | fgIsTraining = false |
static UInt_t | fgTmva_Version_Code = 0 |
#include <TMVA/DecisionTreeNode.h>
TMVA::DecisionTreeNode::DecisionTreeNode | ( | ) |
constructor of an essentially "empty" node floating in space
Definition at line 67 of file DecisionTreeNode.cxx.
TMVA::DecisionTreeNode::DecisionTreeNode | ( | TMVA::Node * | p, |
char | pos | ||
) |
constructor of a daughter node as a daughter of 'p'
Definition at line 91 of file DecisionTreeNode.cxx.
TMVA::DecisionTreeNode::DecisionTreeNode | ( | const DecisionTreeNode & | n, |
DecisionTreeNode * | parent = NULL |
||
) |
copy constructor of a node.
It will result in an explicit copy of the node and recursively all it's daughters
Definition at line 116 of file DecisionTreeNode.cxx.
|
virtual |
destructor
Definition at line 148 of file DecisionTreeNode.cxx.
|
virtual |
adding attributes to tree node (well, was used in BinarySearchTree, and somehow I guess someone programmed it such that we need this in this tree too, although we don't..)
Implements TMVA::Node.
Definition at line 526 of file DecisionTreeNode.cxx.
Definition at line 326 of file DecisionTreeNode.h.
Definition at line 327 of file DecisionTreeNode.h.
void TMVA::DecisionTreeNode::ClearNodeAndAllDaughters | ( | ) |
clear the nodes (their S/N, Nevents etc), just keep the structure of the tree
Definition at line 346 of file DecisionTreeNode.cxx.
|
inlinevirtual |
Implements TMVA::Node.
Definition at line 132 of file DecisionTreeNode.h.
|
inline |
Definition at line 306 of file DecisionTreeNode.h.
|
inline |
Definition at line 310 of file DecisionTreeNode.h.
|
inline |
Definition at line 343 of file DecisionTreeNode.h.
Definition at line 160 of file DecisionTreeNode.h.
Definition at line 155 of file DecisionTreeNode.h.
Definition at line 139 of file DecisionTreeNode.h.
|
inlinevirtual |
Reimplemented from TMVA::Node.
Definition at line 282 of file DecisionTreeNode.h.
Definition at line 233 of file DecisionTreeNode.h.
Definition at line 251 of file DecisionTreeNode.h.
Definition at line 242 of file DecisionTreeNode.h.
|
inline |
Definition at line 319 of file DecisionTreeNode.h.
Definition at line 236 of file DecisionTreeNode.h.
Definition at line 254 of file DecisionTreeNode.h.
Definition at line 245 of file DecisionTreeNode.h.
|
inline |
Definition at line 135 of file DecisionTreeNode.h.
|
inline |
Definition at line 296 of file DecisionTreeNode.h.
Definition at line 165 of file DecisionTreeNode.h.
Definition at line 230 of file DecisionTreeNode.h.
Definition at line 248 of file DecisionTreeNode.h.
Definition at line 239 of file DecisionTreeNode.h.
|
inline |
Definition at line 320 of file DecisionTreeNode.h.
|
inline |
Definition at line 314 of file DecisionTreeNode.h.
|
inlinevirtual |
Reimplemented from TMVA::Node.
Definition at line 284 of file DecisionTreeNode.h.
Definition at line 168 of file DecisionTreeNode.h.
Definition at line 176 of file DecisionTreeNode.h.
|
inlinevirtual |
Reimplemented from TMVA::Node.
Definition at line 283 of file DecisionTreeNode.h.
Definition at line 182 of file DecisionTreeNode.h.
return the maximum of variable ivar from the training sample that pass/end up in this node
Definition at line 424 of file DecisionTreeNode.cxx.
return the minimum of variable ivar from the training sample that pass/end up in this node
Definition at line 413 of file DecisionTreeNode.cxx.
|
inline |
Definition at line 150 of file DecisionTreeNode.h.
Definition at line 265 of file DecisionTreeNode.h.
Definition at line 260 of file DecisionTreeNode.h.
|
inline |
Definition at line 300 of file DecisionTreeNode.h.
|
inline |
Definition at line 329 of file DecisionTreeNode.h.
|
inline |
Definition at line 330 of file DecisionTreeNode.h.
|
static |
Definition at line 558 of file DecisionTreeNode.cxx.
test event if it descends the tree at this node to the left
Implements TMVA::Node.
Definition at line 179 of file DecisionTreeNode.cxx.
test event if it descends the tree at this node to the right
Implements TMVA::Node.
Definition at line 155 of file DecisionTreeNode.cxx.
Definition at line 215 of file DecisionTreeNode.h.
|
inline |
Definition at line 224 of file DecisionTreeNode.h.
Definition at line 218 of file DecisionTreeNode.h.
|
inline |
Definition at line 227 of file DecisionTreeNode.h.
Definition at line 212 of file DecisionTreeNode.h.
|
inline |
Definition at line 221 of file DecisionTreeNode.h.
|
inline |
Definition at line 337 of file DecisionTreeNode.h.
|
static |
Definition at line 554 of file DecisionTreeNode.cxx.
|
staticprotected |
Definition at line 540 of file DecisionTreeNode.cxx.
|
virtual |
void TMVA::DecisionTreeNode::PrintPrune | ( | std::ostream & | os | ) | const |
printout of the node (can be read in with ReadDataRecord)
Definition at line 381 of file DecisionTreeNode.cxx.
|
virtual |
recursively print the node and its daughters (--> print the 'tree')
Implements TMVA::Node.
Definition at line 241 of file DecisionTreeNode.cxx.
void TMVA::DecisionTreeNode::PrintRecPrune | ( | std::ostream & | os | ) | const |
recursive printout of the node and its daughters
Definition at line 393 of file DecisionTreeNode.cxx.
|
virtual |
Implements TMVA::Node.
Definition at line 455 of file DecisionTreeNode.cxx.
|
virtual |
reading attributes from tree node (well, was used in BinarySearchTree, and somehow I guess someone programmed it such that we need this in this tree too, although we don't..)
Implements TMVA::Node.
Definition at line 535 of file DecisionTreeNode.cxx.
|
virtual |
void TMVA::DecisionTreeNode::ResetValidationData | ( | ) |
temporary stored node values (number of events, etc.) that originate not from the training but from the validation data (used in pruning)
Definition at line 366 of file DecisionTreeNode.cxx.
Definition at line 305 of file DecisionTreeNode.h.
Definition at line 309 of file DecisionTreeNode.h.
Definition at line 403 of file DecisionTreeNode.cxx.
Definition at line 158 of file DecisionTreeNode.h.
Definition at line 153 of file DecisionTreeNode.h.
set fisher coefficients
Definition at line 515 of file DecisionTreeNode.cxx.
Definition at line 546 of file DecisionTreeNode.cxx.
Reimplemented from TMVA::Node.
Definition at line 287 of file DecisionTreeNode.h.
Definition at line 188 of file DecisionTreeNode.h.
Definition at line 206 of file DecisionTreeNode.h.
Definition at line 197 of file DecisionTreeNode.h.
Definition at line 317 of file DecisionTreeNode.h.
Definition at line 191 of file DecisionTreeNode.h.
Definition at line 209 of file DecisionTreeNode.h.
Definition at line 200 of file DecisionTreeNode.h.
Definition at line 134 of file DecisionTreeNode.h.
Definition at line 295 of file DecisionTreeNode.h.
Definition at line 163 of file DecisionTreeNode.h.
Definition at line 185 of file DecisionTreeNode.h.
Definition at line 203 of file DecisionTreeNode.h.
Definition at line 194 of file DecisionTreeNode.h.
Definition at line 318 of file DecisionTreeNode.h.
Definition at line 313 of file DecisionTreeNode.h.
Reimplemented from TMVA::Node.
Definition at line 289 of file DecisionTreeNode.h.
return the S/(S+B) (purity) for the node REM: even if nodes with purity 0.01 are very PURE background nodes, they still get a small value of the purity.
Definition at line 191 of file DecisionTreeNode.cxx.
Definition at line 173 of file DecisionTreeNode.h.
Reimplemented from TMVA::Node.
Definition at line 288 of file DecisionTreeNode.h.
Definition at line 179 of file DecisionTreeNode.h.
set the maximum of variable ivar from the training sample that pass/end up in this node
Definition at line 446 of file DecisionTreeNode.cxx.
set the minimum of variable ivar from the training sample that pass/end up in this node
Definition at line 435 of file DecisionTreeNode.cxx.
Definition at line 148 of file DecisionTreeNode.h.
Definition at line 263 of file DecisionTreeNode.h.
Definition at line 258 of file DecisionTreeNode.h.
Definition at line 299 of file DecisionTreeNode.h.
Definition at line 323 of file DecisionTreeNode.h.
Definition at line 324 of file DecisionTreeNode.h.
Definition at line 338 of file DecisionTreeNode.h.
Definition at line 550 of file DecisionTreeNode.cxx.
|
protected |
Definition at line 370 of file DecisionTreeNode.h.
|
protected |
Definition at line 369 of file DecisionTreeNode.h.
|
protected |
Definition at line 367 of file DecisionTreeNode.h.
|
staticprotected |
Definition at line 364 of file DecisionTreeNode.h.
|
staticprotected |
Definition at line 365 of file DecisionTreeNode.h.
|
protected |
Definition at line 378 of file DecisionTreeNode.h.
|
protected |
Definition at line 375 of file DecisionTreeNode.h.
|
protected |
Definition at line 376 of file DecisionTreeNode.h.
|
protected |
Definition at line 373 of file DecisionTreeNode.h.
|
protected |
Definition at line 374 of file DecisionTreeNode.h.
|
protected |
Definition at line 371 of file DecisionTreeNode.h.
|
mutableprotected |
flag to set node as terminal (i.e., without deleting its descendants)
Definition at line 380 of file DecisionTreeNode.h.