Interface to Clermond-Ferrand artificial neural network.
The CFMlpANN belong to the class of Multilayer Perceptrons (MLP), which are feed-forward networks according to the following propagation schema:
The input layer contains as many neurons as input variables used in the MVA. The output layer contains two neurons for the signal and background event classes. In between the input and output layers are a variable number of k hidden layers with arbitrary numbers of neurons. (While the structure of the input and output layers is determined by the problem, the hidden layers can be configured by the user through the option string of the method booking.)
As indicated in the sketch, all neuron inputs to a layer are linear combinations of the neuron output of the previous layer. The transfer from input to output within a neuron is performed by means of an "activation function". In general, the activation function of a neuron can be zero (deactivated), one (linear), or non-linear. The above example uses a sigmoid activation function. The transfer function of the output layer is usually linear. As a consequence: an ANN without hidden layer should give identical discrimination power as a linear discriminant analysis (Fisher). In case of one hidden layer, the ANN computes a linear combination of sigmoid.
The learning method used by the CFMlpANN is only stochastic.
Definition at line 95 of file MethodCFMlpANN.h.
Public Member Functions | |
MethodCFMlpANN (const TString &jobName, const TString &methodTitle, DataSetInfo &theData, const TString &theOption="3000:N-1:N-2") | |
standard constructor | |
MethodCFMlpANN (DataSetInfo &theData, const TString &theWeightFile) | |
constructor from weight file | |
virtual | ~MethodCFMlpANN (void) |
destructor | |
void | AddWeightsXMLTo (void *parent) const |
write weights to xml file | |
const Ranking * | CreateRanking () |
Int_t | GetClass (Int_t ivar) const |
Double_t | GetData (Int_t isel, Int_t ivar) const |
Double_t | GetMvaValue (Double_t *err=0, Double_t *errUpper=0) |
returns CFMlpANN output (normalised within [0,1]) | |
virtual Bool_t | HasAnalysisType (Types::EAnalysisType type, UInt_t numberClasses, UInt_t) |
CFMlpANN can handle classification with 2 classes. | |
virtual void | ReadWeightsFromStream (std::istream &)=0 |
void | ReadWeightsFromStream (std::istream &istr) |
read back the weight from the training from file (stream) | |
virtual void | ReadWeightsFromStream (TFile &) |
void | ReadWeightsFromXML (void *wghtnode) |
read weights from xml file | |
void | Train (void) |
training of the Clement-Ferrand NN classifier | |
Public Member Functions inherited from TMVA::MethodBase | |
MethodBase (const TString &jobName, Types::EMVA methodType, const TString &methodTitle, DataSetInfo &dsi, const TString &theOption="") | |
standard constructor | |
MethodBase (Types::EMVA methodType, DataSetInfo &dsi, const TString &weightFile) | |
constructor used for Testing + Application of the MVA, only (no training), using given WeightFiles | |
virtual | ~MethodBase () |
destructor | |
void | AddOutput (Types::ETreeType type, Types::EAnalysisType analysisType) |
TDirectory * | BaseDir () const |
returns the ROOT directory where info/histograms etc of the corresponding MVA method instance are stored | |
virtual void | CheckSetup () |
check may be overridden by derived class (sometimes, eg, fitters are used which can only be implemented during training phase) | |
DataSet * | Data () const |
DataSetInfo & | DataInfo () const |
virtual void | DeclareCompatibilityOptions () |
options that are used ONLY for the READER to ensure backward compatibility they are hence without any effect (the reader is only reading the training options that HAD been used at the training of the .xml weight file at hand | |
void | DisableWriting (Bool_t setter) |
Bool_t | DoMulticlass () const |
Bool_t | DoRegression () const |
void | ExitFromTraining () |
Types::EAnalysisType | GetAnalysisType () const |
UInt_t | GetCurrentIter () |
virtual Double_t | GetEfficiency (const TString &, Types::ETreeType, Double_t &err) |
fill background efficiency (resp. | |
const Event * | GetEvent () const |
const Event * | GetEvent (const TMVA::Event *ev) const |
const Event * | GetEvent (Long64_t ievt) const |
const Event * | GetEvent (Long64_t ievt, Types::ETreeType type) const |
const std::vector< TMVA::Event * > & | GetEventCollection (Types::ETreeType type) |
returns the event collection (i.e. | |
TFile * | GetFile () const |
const TString & | GetInputLabel (Int_t i) const |
const char * | GetInputTitle (Int_t i) const |
const TString & | GetInputVar (Int_t i) const |
TMultiGraph * | GetInteractiveTrainingError () |
const TString & | GetJobName () const |
virtual Double_t | GetKSTrainingVsTest (Char_t SorB, TString opt="X") |
virtual Double_t | GetMaximumSignificance (Double_t SignalEvents, Double_t BackgroundEvents, Double_t &optimal_significance_value) const |
plot significance, \( \frac{S}{\sqrt{S^2 + B^2}} \), curve for given number of signal and background events; returns cut for maximum significance also returned via reference is the maximum significance | |
UInt_t | GetMaxIter () |
Double_t | GetMean (Int_t ivar) const |
const TString & | GetMethodName () const |
Types::EMVA | GetMethodType () const |
TString | GetMethodTypeName () const |
virtual TMatrixD | GetMulticlassConfusionMatrix (Double_t effB, Types::ETreeType type) |
Construct a confusion matrix for a multiclass classifier. | |
virtual std::vector< Float_t > | GetMulticlassEfficiency (std::vector< std::vector< Float_t > > &purity) |
virtual std::vector< Float_t > | GetMulticlassTrainingEfficiency (std::vector< std::vector< Float_t > > &purity) |
virtual const std::vector< Float_t > & | GetMulticlassValues () |
Double_t | GetMvaValue (const TMVA::Event *const ev, Double_t *err=0, Double_t *errUpper=0) |
const char * | GetName () const |
UInt_t | GetNEvents () const |
UInt_t | GetNTargets () const |
UInt_t | GetNvar () const |
UInt_t | GetNVariables () const |
virtual Double_t | GetProba (const Event *ev) |
virtual Double_t | GetProba (Double_t mvaVal, Double_t ap_sig) |
compute likelihood ratio | |
const TString | GetProbaName () const |
virtual Double_t | GetRarity (Double_t mvaVal, Types::ESBType reftype=Types::kBackground) const |
compute rarity: | |
virtual void | GetRegressionDeviation (UInt_t tgtNum, Types::ETreeType type, Double_t &stddev, Double_t &stddev90Percent) const |
virtual const std::vector< Float_t > & | GetRegressionValues () |
const std::vector< Float_t > & | GetRegressionValues (const TMVA::Event *const ev) |
Double_t | GetRMS (Int_t ivar) const |
virtual Double_t | GetROCIntegral (PDF *pdfS=0, PDF *pdfB=0) const |
calculate the area (integral) under the ROC curve as a overall quality measure of the classification | |
virtual Double_t | GetROCIntegral (TH1D *histS, TH1D *histB) const |
calculate the area (integral) under the ROC curve as a overall quality measure of the classification | |
virtual Double_t | GetSeparation (PDF *pdfS=0, PDF *pdfB=0) const |
compute "separation" defined as | |
virtual Double_t | GetSeparation (TH1 *, TH1 *) const |
compute "separation" defined as | |
Double_t | GetSignalReferenceCut () const |
Double_t | GetSignalReferenceCutOrientation () const |
virtual Double_t | GetSignificance () const |
compute significance of mean difference | |
const Event * | GetTestingEvent (Long64_t ievt) const |
Double_t | GetTestTime () const |
const TString & | GetTestvarName () const |
virtual Double_t | GetTrainingEfficiency (const TString &) |
const Event * | GetTrainingEvent (Long64_t ievt) const |
virtual const std::vector< Float_t > & | GetTrainingHistory (const char *) |
UInt_t | GetTrainingROOTVersionCode () const |
TString | GetTrainingROOTVersionString () const |
calculates the ROOT version string from the training version code on the fly | |
UInt_t | GetTrainingTMVAVersionCode () const |
TString | GetTrainingTMVAVersionString () const |
calculates the TMVA version string from the training version code on the fly | |
Double_t | GetTrainTime () const |
TransformationHandler & | GetTransformationHandler (Bool_t takeReroutedIfAvailable=true) |
const TransformationHandler & | GetTransformationHandler (Bool_t takeReroutedIfAvailable=true) const |
TString | GetWeightFileName () const |
retrieve weight file name | |
Double_t | GetXmax (Int_t ivar) const |
Double_t | GetXmin (Int_t ivar) const |
Bool_t | HasMVAPdfs () const |
void | InitIPythonInteractive () |
Bool_t | IsModelPersistence () const |
virtual Bool_t | IsSignalLike () |
uses a pre-set cut on the MVA output (SetSignalReferenceCut and SetSignalReferenceCutOrientation) for a quick determination if an event would be selected as signal or background | |
virtual Bool_t | IsSignalLike (Double_t mvaVal) |
uses a pre-set cut on the MVA output (SetSignalReferenceCut and SetSignalReferenceCutOrientation) for a quick determination if an event with this mva output value would be selected as signal or background | |
Bool_t | IsSilentFile () const |
virtual void | MakeClass (const TString &classFileName=TString("")) const |
create reader class for method (classification only at present) | |
TDirectory * | MethodBaseDir () const |
returns the ROOT directory where all instances of the corresponding MVA method are stored | |
virtual std::map< TString, Double_t > | OptimizeTuningParameters (TString fomType="ROCIntegral", TString fitType="FitGA") |
call the Optimizer with the set of parameters and ranges that are meant to be tuned. | |
void | PrintHelpMessage () const |
prints out method-specific help method | |
void | ProcessSetup () |
process all options the "CheckForUnusedOptions" is done in an independent call, since it may be overridden by derived class (sometimes, eg, fitters are used which can only be implemented during training phase) | |
void | ReadStateFromFile () |
Function to write options and weights to file. | |
void | ReadStateFromStream (std::istream &tf) |
read the header from the weight files of the different MVA methods | |
void | ReadStateFromStream (TFile &rf) |
write reference MVA distributions (and other information) to a ROOT type weight file | |
void | ReadStateFromXMLString (const char *xmlstr) |
for reading from memory | |
void | RerouteTransformationHandler (TransformationHandler *fTargetTransformation) |
virtual void | Reset () |
virtual void | SetAnalysisType (Types::EAnalysisType type) |
void | SetBaseDir (TDirectory *methodDir) |
void | SetFile (TFile *file) |
void | SetMethodBaseDir (TDirectory *methodDir) |
void | SetMethodDir (TDirectory *methodDir) |
void | SetModelPersistence (Bool_t status) |
void | SetSignalReferenceCut (Double_t cut) |
void | SetSignalReferenceCutOrientation (Double_t cutOrientation) |
void | SetSilentFile (Bool_t status) |
void | SetTestTime (Double_t testTime) |
void | SetTestvarName (const TString &v="") |
void | SetTrainTime (Double_t trainTime) |
virtual void | SetTuneParameters (std::map< TString, Double_t > tuneParameters) |
set the tuning parameters according to the argument This is just a dummy . | |
void | SetupMethod () |
setup of methods | |
virtual void | TestClassification () |
initialization | |
virtual void | TestMulticlass () |
test multiclass classification | |
virtual void | TestRegression (Double_t &bias, Double_t &biasT, Double_t &dev, Double_t &devT, Double_t &rms, Double_t &rmsT, Double_t &mInf, Double_t &mInfT, Double_t &corr, Types::ETreeType type) |
calculate <sum-of-deviation-squared> of regression output versus "true" value from test sample | |
bool | TrainingEnded () |
void | TrainMethod () |
virtual void | WriteEvaluationHistosToFile (Types::ETreeType treetype) |
writes all MVA evaluation histograms to file | |
virtual void | WriteMonitoringHistosToFile () const |
write special monitoring histograms to file dummy implementation here --------------— | |
void | WriteStateToFile () const |
write options and weights to file note that each one text file for the main configuration information and one ROOT file for ROOT objects are created | |
Public Member Functions inherited from TMVA::IMethod | |
IMethod () | |
virtual | ~IMethod () |
Public Member Functions inherited from TMVA::Configurable | |
Configurable (const TString &theOption="") | |
constructor | |
virtual | ~Configurable () |
default destructor | |
void | AddOptionsXMLTo (void *parent) const |
write options to XML file | |
template<class T > | |
void | AddPreDefVal (const T &) |
template<class T > | |
void | AddPreDefVal (const TString &optname, const T &) |
void | CheckForUnusedOptions () const |
checks for unused options in option string | |
template<class T > | |
TMVA::OptionBase * | DeclareOptionRef (T &ref, const TString &name, const TString &desc) |
template<class T > | |
OptionBase * | DeclareOptionRef (T &ref, const TString &name, const TString &desc="") |
template<class T > | |
TMVA::OptionBase * | DeclareOptionRef (T *&ref, Int_t size, const TString &name, const TString &desc) |
template<class T > | |
OptionBase * | DeclareOptionRef (T *&ref, Int_t size, const TString &name, const TString &desc="") |
const char * | GetConfigDescription () const |
const char * | GetConfigName () const |
const TString & | GetOptions () const |
MsgLogger & | Log () const |
virtual void | ParseOptions () |
options parser | |
void | PrintOptions () const |
prints out the options set in the options string and the defaults | |
void | ReadOptionsFromStream (std::istream &istr) |
read option back from the weight file | |
void | ReadOptionsFromXML (void *node) |
void | SetConfigDescription (const char *d) |
void | SetConfigName (const char *n) |
void | SetMsgType (EMsgType t) |
void | SetOptions (const TString &s) |
void | WriteOptionsToStream (std::ostream &o, const TString &prefix) const |
write options to output stream (e.g. in writing the MVA weight files | |
Public Member Functions inherited from TNamed | |
TNamed () | |
TNamed (const char *name, const char *title) | |
TNamed (const TNamed &named) | |
TNamed copy ctor. | |
TNamed (const TString &name, const TString &title) | |
virtual | ~TNamed () |
TNamed destructor. | |
virtual void | Clear (Option_t *option="") |
Set name and title to empty strings (""). | |
virtual TObject * | Clone (const char *newname="") const |
Make a clone of an object using the Streamer facility. | |
virtual Int_t | Compare (const TObject *obj) const |
Compare two TNamed objects. | |
virtual void | Copy (TObject &named) const |
Copy this to obj. | |
virtual void | FillBuffer (char *&buffer) |
Encode TNamed into output buffer. | |
virtual const char * | GetTitle () const |
Returns title of object. | |
virtual ULong_t | Hash () const |
Return hash value for this object. | |
virtual Bool_t | IsSortable () const |
virtual void | ls (Option_t *option="") const |
List TNamed name and title. | |
TNamed & | operator= (const TNamed &rhs) |
TNamed assignment operator. | |
virtual void | Print (Option_t *option="") const |
Print TNamed name and title. | |
virtual void | SetName (const char *name) |
Set the name of the TNamed. | |
virtual void | SetNameTitle (const char *name, const char *title) |
Set all the TNamed parameters (name and title). | |
virtual void | SetTitle (const char *title="") |
Set the title of the TNamed. | |
virtual Int_t | Sizeof () const |
Return size of the TNamed part of the TObject. | |
Public Member Functions inherited from TObject | |
TObject () | |
TObject constructor. | |
TObject (const TObject &object) | |
TObject copy ctor. | |
virtual | ~TObject () |
TObject destructor. | |
void | AbstractMethod (const char *method) const |
Use this method to implement an "abstract" method that you don't want to leave purely abstract. | |
virtual void | AppendPad (Option_t *option="") |
Append graphics object to current pad. | |
virtual void | Browse (TBrowser *b) |
Browse object. May be overridden for another default action. | |
ULong_t | CheckedHash () |
Check and record whether this class has a consistent Hash/RecursiveRemove setup (*) and then return the regular Hash value for this object. | |
virtual const char * | ClassName () const |
Returns name of class to which the object belongs. | |
virtual void | Delete (Option_t *option="") |
Delete this object. | |
virtual Int_t | DistancetoPrimitive (Int_t px, Int_t py) |
Computes distance from point (px,py) to the object. | |
virtual void | Draw (Option_t *option="") |
Default Draw method for all objects. | |
virtual void | DrawClass () const |
Draw class inheritance tree of the class to which this object belongs. | |
virtual TObject * | DrawClone (Option_t *option="") const |
Draw a clone of this object in the current selected pad for instance with: gROOT->SetSelectedPad(gPad) . | |
virtual void | Dump () const |
Dump contents of object on stdout. | |
virtual void | Error (const char *method, const char *msgfmt,...) const |
Issue error message. | |
virtual void | Execute (const char *method, const char *params, Int_t *error=0) |
Execute method on this object with the given parameter string, e.g. | |
virtual void | Execute (TMethod *method, TObjArray *params, Int_t *error=0) |
Execute method on this object with parameters stored in the TObjArray. | |
virtual void | ExecuteEvent (Int_t event, Int_t px, Int_t py) |
Execute action corresponding to an event at (px,py). | |
virtual void | Fatal (const char *method, const char *msgfmt,...) const |
Issue fatal error message. | |
virtual TObject * | FindObject (const char *name) const |
Must be redefined in derived classes. | |
virtual TObject * | FindObject (const TObject *obj) const |
Must be redefined in derived classes. | |
virtual Option_t * | GetDrawOption () const |
Get option used by the graphics system to draw this object. | |
virtual const char * | GetIconName () const |
Returns mime type name of object. | |
virtual char * | GetObjectInfo (Int_t px, Int_t py) const |
Returns string containing info about the object at position (px,py). | |
virtual Option_t * | GetOption () const |
virtual UInt_t | GetUniqueID () const |
Return the unique object id. | |
virtual Bool_t | HandleTimer (TTimer *timer) |
Execute action in response of a timer timing out. | |
Bool_t | HasInconsistentHash () const |
Return true is the type of this object is known to have an inconsistent setup for Hash and RecursiveRemove (i.e. | |
virtual void | Info (const char *method, const char *msgfmt,...) const |
Issue info message. | |
virtual Bool_t | InheritsFrom (const char *classname) const |
Returns kTRUE if object inherits from class "classname". | |
virtual Bool_t | InheritsFrom (const TClass *cl) const |
Returns kTRUE if object inherits from TClass cl. | |
virtual void | Inspect () const |
Dump contents of this object in a graphics canvas. | |
void | InvertBit (UInt_t f) |
Bool_t | IsDestructed () const |
IsDestructed. | |
virtual Bool_t | IsEqual (const TObject *obj) const |
Default equal comparison (objects are equal if they have the same address in memory). | |
virtual Bool_t | IsFolder () const |
Returns kTRUE in case object contains browsable objects (like containers or lists of other objects). | |
R__ALWAYS_INLINE Bool_t | IsOnHeap () const |
R__ALWAYS_INLINE Bool_t | IsZombie () const |
void | MayNotUse (const char *method) const |
Use this method to signal that a method (defined in a base class) may not be called in a derived class (in principle against good design since a child class should not provide less functionality than its parent, however, sometimes it is necessary). | |
virtual Bool_t | Notify () |
This method must be overridden to handle object notification. | |
void | Obsolete (const char *method, const char *asOfVers, const char *removedFromVers) const |
Use this method to declare a method obsolete. | |
void | operator delete (void *ptr) |
Operator delete. | |
void | operator delete[] (void *ptr) |
Operator delete []. | |
void * | operator new (size_t sz) |
void * | operator new (size_t sz, void *vp) |
void * | operator new[] (size_t sz) |
void * | operator new[] (size_t sz, void *vp) |
TObject & | operator= (const TObject &rhs) |
TObject assignment operator. | |
virtual void | Paint (Option_t *option="") |
This method must be overridden if a class wants to paint itself. | |
virtual void | Pop () |
Pop on object drawn in a pad to the top of the display list. | |
virtual Int_t | Read (const char *name) |
Read contents of object with specified name from the current directory. | |
virtual void | RecursiveRemove (TObject *obj) |
Recursively remove this object from a list. | |
void | ResetBit (UInt_t f) |
virtual void | SaveAs (const char *filename="", Option_t *option="") const |
Save this object in the file specified by filename. | |
virtual void | SavePrimitive (std::ostream &out, Option_t *option="") |
Save a primitive as a C++ statement(s) on output stream "out". | |
void | SetBit (UInt_t f) |
void | SetBit (UInt_t f, Bool_t set) |
Set or unset the user status bits as specified in f. | |
virtual void | SetDrawOption (Option_t *option="") |
Set drawing option for object. | |
virtual void | SetUniqueID (UInt_t uid) |
Set the unique object id. | |
virtual void | SysError (const char *method, const char *msgfmt,...) const |
Issue system error message. | |
R__ALWAYS_INLINE Bool_t | TestBit (UInt_t f) const |
Int_t | TestBits (UInt_t f) const |
virtual void | UseCurrentStyle () |
Set current style settings in this object This function is called when either TCanvas::UseCurrentStyle or TROOT::ForceStyle have been invoked. | |
virtual void | Warning (const char *method, const char *msgfmt,...) const |
Issue warning message. | |
virtual Int_t | Write (const char *name=0, Int_t option=0, Int_t bufsize=0) |
Write this object to the current directory. | |
virtual Int_t | Write (const char *name=0, Int_t option=0, Int_t bufsize=0) const |
Write this object to the current directory. | |
Protected Member Functions | |
Int_t | DataInterface (Double_t *, Double_t *, Int_t *, Int_t *, Int_t *, Int_t *, Double_t *, Int_t *, Int_t *) |
data interface function | |
void | GetHelpMessage () const |
get help message text | |
void | MakeClassSpecific (std::ostream &, const TString &) const |
void | MakeClassSpecificHeader (std::ostream &, const TString &="") const |
write specific classifier response for header | |
Protected Member Functions inherited from TMVA::MethodBase | |
virtual std::vector< Double_t > | GetDataMvaValues (DataSet *data=nullptr, Long64_t firstEvt=0, Long64_t lastEvt=-1, Bool_t logProgress=false) |
get all the MVA values for the events of the given Data type | |
const TString & | GetInternalVarName (Int_t ivar) const |
virtual std::vector< Double_t > | GetMvaValues (Long64_t firstEvt=0, Long64_t lastEvt=-1, Bool_t logProgress=false) |
get all the MVA values for the events of the current Data type | |
const TString & | GetOriginalVarName (Int_t ivar) const |
const TString & | GetWeightFileDir () const |
Bool_t | HasTrainingTree () const |
Bool_t | Help () const |
Bool_t | IgnoreEventsWithNegWeightsInTraining () const |
Bool_t | IsConstructedFromWeightFile () const |
Bool_t | IsNormalised () const |
void | NoErrorCalc (Double_t *const err, Double_t *const errUpper) |
void | SetNormalised (Bool_t norm) |
void | SetWeightFileDir (TString fileDir) |
set directory of weight file | |
void | SetWeightFileName (TString) |
set the weight file name (depreciated) | |
void | Statistics (Types::ETreeType treeType, const TString &theVarName, Double_t &, Double_t &, Double_t &, Double_t &, Double_t &, Double_t &) |
calculates rms,mean, xmin, xmax of the event variable this can be either done for the variables as they are or for normalised variables (in the range of 0-1) if "norm" is set to kTRUE | |
Bool_t | TxtWeightsOnly () const |
Bool_t | Verbose () const |
Protected Member Functions inherited from TMVA::Configurable | |
void | EnableLooseOptions (Bool_t b=kTRUE) |
const TString & | GetReferenceFile () const |
Bool_t | LooseOptionCheckingEnabled () const |
void | ResetSetFlag () |
resets the IsSet flag for all declare options to be called before options are read from stream | |
void | WriteOptionsReferenceToFile () |
write complete options to output stream | |
Protected Member Functions inherited from TObject | |
virtual void | DoError (int level, const char *location, const char *fmt, va_list va) const |
Interface to ErrorHandler (protected). | |
void | MakeZombie () |
Private Member Functions | |
void | DeclareOptions () |
define the options (their key words) that can be set in the option string know options: NCycles=xx :the number of training cycles HiddenLayser="N-1,N-2" :the specification of the hidden layers | |
Double_t | EvalANN (std::vector< Double_t > &, Bool_t &isOK) |
evaluates NN value as function of input variables | |
void | Init (void) |
default initialisation called by all constructors | |
void | NN_ava (Double_t *) |
auxiliary functions | |
Double_t | NN_fonc (Int_t, Double_t) const |
activation function | |
void | PrintWeights (std::ostream &o) const |
write the weights of the neural net | |
void | ProcessOptions () |
decode the options in the option string | |
Private Member Functions inherited from TMVA::MethodCFMlpANN_Utils | |
MethodCFMlpANN_Utils () | |
default constructor | |
virtual | ~MethodCFMlpANN_Utils () |
Destructor. | |
void | Arret (const char *mot) |
void | CollectVar (Int_t *nvar, Int_t *class__, Double_t *xpg) |
[smart comments to be added] | |
void | Cout (Int_t *, Double_t *xxx) |
[smart comments to be added] | |
void | Cout2 (Int_t *, Double_t *yyy) |
[smart comments to be added] | |
void | En_arriere (Int_t *ievent) |
[smart comments to be added] | |
void | En_avant (Int_t *ievent) |
[smart comments to be added] | |
void | En_avant2 (Int_t *ievent) |
[smart comments to be added] | |
void | Entree_new (Int_t *, char *, Int_t *ntrain, Int_t *ntest, Int_t *numlayer, Int_t *nodes, Int_t *numcycle, Int_t) |
Double_t | Fdecroi (Int_t *i__) |
[smart comments to be added] | |
void | Foncf (Int_t *i__, Double_t *u, Double_t *f) |
void | GraphNN (Int_t *ilearn, Double_t *, Double_t *, char *, Int_t) |
[smart comments to be added] | |
void | Inl () |
[smart comments to be added] | |
void | Innit (char *det, Double_t *tout2, Double_t *tin2, Int_t) |
void | Lecev2 (Int_t *ktest, Double_t *tout2, Double_t *tin2) |
[smart comments to be added] | |
void | Leclearn (Int_t *ktest, Double_t *tout2, Double_t *tin2) |
[smart comments to be added] | |
void | Out (Int_t *iii, Int_t *maxcycle) |
Double_t | Sen3a (void) |
[smart comments to be added] | |
void | SetLogger (MsgLogger *l) |
void | TestNN () |
[smart comments to be added] | |
void | Train_nn (Double_t *tin2, Double_t *tout2, Int_t *ntrain, Int_t *ntest, Int_t *nvar2, Int_t *nlayer, Int_t *nodes, Int_t *ncycle) |
Double_t | W_ref (const Double_t wNN[], Int_t a_1, Int_t a_2, Int_t a_3) const |
Double_t & | W_ref (Double_t wNN[], Int_t a_1, Int_t a_2, Int_t a_3) |
void | Wini () |
[smart comments to be added] | |
Double_t | Ww_ref (const Double_t wwNN[], Int_t a_1, Int_t a_2) const |
Double_t & | Ww_ref (Double_t wwNN[], Int_t a_1, Int_t a_2) |
Additional Inherited Members | |
Public Types inherited from TMVA::MethodBase | |
enum | EWeightFileType { kROOT =0 , kTEXT } |
Public Types inherited from TObject | |
enum | { kIsOnHeap = 0x01000000 , kNotDeleted = 0x02000000 , kZombie = 0x04000000 , kInconsistent = 0x08000000 , kBitMask = 0x00ffffff } |
enum | { kSingleKey = BIT(0) , kOverwrite = BIT(1) , kWriteDelete = BIT(2) } |
enum | EDeprecatedStatusBits { kObjInCanvas = BIT(3) } |
enum | EStatusBits { kCanDelete = BIT(0) , kMustCleanup = BIT(3) , kIsReferenced = BIT(4) , kHasUUID = BIT(5) , kCannotPick = BIT(6) , kNoContextMenu = BIT(8) , kInvalidObject = BIT(13) } |
Static Public Member Functions inherited from TObject | |
static Longptr_t | GetDtorOnly () |
Return destructor only flag. | |
static Bool_t | GetObjectStat () |
Get status of object stat flag. | |
static void | SetDtorOnly (void *obj) |
Set destructor only flag. | |
static void | SetObjectStat (Bool_t stat) |
Turn on/off tracking of objects in the TObjectTable. | |
Public Attributes inherited from TMVA::MethodBase | |
Bool_t | fSetupCompleted |
TrainingHistory | fTrainHistory |
Protected Types inherited from TObject | |
enum | { kOnlyPrepStep = BIT(3) } |
Protected Attributes inherited from TMVA::MethodBase | |
Types::EAnalysisType | fAnalysisType |
UInt_t | fBackgroundClass |
bool | fExitFromTraining = false |
std::vector< TString > * | fInputVars |
IPythonInteractive * | fInteractive = nullptr |
temporary dataset used when evaluating on a different data (used by MethodCategory::GetMvaValues) | |
UInt_t | fIPyCurrentIter = 0 |
UInt_t | fIPyMaxIter = 0 |
std::vector< Float_t > * | fMulticlassReturnVal |
Int_t | fNbins |
Int_t | fNbinsH |
Int_t | fNbinsMVAoutput |
Ranking * | fRanking |
std::vector< Float_t > * | fRegressionReturnVal |
Results * | fResults |
UInt_t | fSignalClass |
DataSet * | fTmpData = nullptr |
temporary event when testing on a different DataSet than the own one | |
const Event * | fTmpEvent |
Protected Attributes inherited from TMVA::Configurable | |
MsgLogger * | fLogger |
Protected Attributes inherited from TNamed | |
TString | fName |
TString | fTitle |
Static Private Attributes inherited from TMVA::MethodCFMlpANN_Utils | |
static const Int_t | fg_max_nNodes_ = max_nNodes_ |
static const Int_t | fg_max_nVar_ = max_nVar_ |
static const char *const | fg_MethodName = "--- CFMlpANN " |
#include <TMVA/MethodCFMlpANN.h>
TMVA::MethodCFMlpANN::MethodCFMlpANN | ( | const TString & | jobName, |
const TString & | methodTitle, | ||
DataSetInfo & | theData, | ||
const TString & | theOption = "3000:N-1:N-2" |
||
) |
standard constructor
option string: "n_training_cycles:n_hidden_layers"
default is: n_training_cycles = 5000, n_layers = 4
since there is one input and one output layer. The number of nodes (neurons) is predefined to be:
n_nodes[i] = nvars + 1 - i (where i=1..n_layers)
with nvars being the number of variables used in the NN.
Hence, the default case is:
n_neurons(layer 1 (input)) : nvars n_neurons(layer 2 (hidden)): nvars-1 n_neurons(layer 3 (hidden)): nvars-1 n_neurons(layer 4 (out)) : 2
This artificial neural network usually needs a relatively large number of cycles to converge (8000 and more). Overtraining can be efficiently tested by comparing the signal and background output of the NN for the events that were used for training and an independent data sample (with equal properties). If the separation performance is significantly better for the training sample, the NN interprets statistical effects, and is hence overtrained. In this case, the number of cycles should be reduced, or the size of the training sample increased.
Definition at line 130 of file MethodCFMlpANN.cxx.
TMVA::MethodCFMlpANN::MethodCFMlpANN | ( | DataSetInfo & | theData, |
const TString & | theWeightFile | ||
) |
constructor from weight file
Definition at line 149 of file MethodCFMlpANN.cxx.
|
virtual |
destructor
Definition at line 269 of file MethodCFMlpANN.cxx.
write weights to xml file
Implements TMVA::MethodBase.
Definition at line 537 of file MethodCFMlpANN.cxx.
|
inlinevirtual |
Implements TMVA::MethodBase.
Definition at line 131 of file MethodCFMlpANN.h.
|
protectedvirtual |
data interface function
Implements TMVA::MethodCFMlpANN_Utils.
Definition at line 506 of file MethodCFMlpANN.cxx.
|
privatevirtual |
define the options (their key words) that can be set in the option string know options: NCycles=xx :the number of training cycles HiddenLayser="N-1,N-2" :the specification of the hidden layers
Implements TMVA::MethodBase.
Definition at line 176 of file MethodCFMlpANN.cxx.
evaluates NN value as function of input variables
Definition at line 343 of file MethodCFMlpANN.cxx.
Definition at line 127 of file MethodCFMlpANN.h.
Definition at line 126 of file MethodCFMlpANN.h.
|
protectedvirtual |
get help message text
typical length of text line: "|--------------------------------------------------------------|"
Implements TMVA::IMethod.
Definition at line 711 of file MethodCFMlpANN.cxx.
returns CFMlpANN output (normalised within [0,1])
Implements TMVA::MethodBase.
Definition at line 321 of file MethodCFMlpANN.cxx.
|
virtual |
CFMlpANN can handle classification with 2 classes.
Implements TMVA::IMethod.
Definition at line 165 of file MethodCFMlpANN.cxx.
default initialisation called by all constructors
Implements TMVA::MethodBase.
Definition at line 257 of file MethodCFMlpANN.cxx.
|
protectedvirtual |
Reimplemented from TMVA::MethodBase.
Definition at line 691 of file MethodCFMlpANN.cxx.
|
protectedvirtual |
write specific classifier response for header
Reimplemented from TMVA::MethodBase.
Definition at line 701 of file MethodCFMlpANN.cxx.
auxiliary functions
Definition at line 377 of file MethodCFMlpANN.cxx.
activation function
Definition at line 397 of file MethodCFMlpANN.cxx.
|
private |
write the weights of the neural net
Definition at line 630 of file MethodCFMlpANN.cxx.
|
privatevirtual |
decode the options in the option string
Implements TMVA::MethodBase.
Definition at line 185 of file MethodCFMlpANN.cxx.
|
virtual |
Implements TMVA::MethodBase.
|
virtual |
read back the weight from the training from file (stream)
Implements TMVA::MethodBase.
Definition at line 414 of file MethodCFMlpANN.cxx.
Reimplemented from TMVA::MethodBase.
Definition at line 266 of file MethodBase.h.
read weights from xml file
Implements TMVA::MethodBase.
Definition at line 581 of file MethodCFMlpANN.cxx.
training of the Clement-Ferrand NN classifier
Implements TMVA::MethodBase.
Definition at line 285 of file MethodCFMlpANN.cxx.
|
private |
Definition at line 157 of file MethodCFMlpANN.h.
|
private |
Definition at line 156 of file MethodCFMlpANN.h.
|
private |
Definition at line 165 of file MethodCFMlpANN.h.
|
private |
Definition at line 160 of file MethodCFMlpANN.h.
|
private |
Definition at line 159 of file MethodCFMlpANN.h.
|
private |
Definition at line 161 of file MethodCFMlpANN.h.
|
private |
Definition at line 164 of file MethodCFMlpANN.h.
|
private |
Definition at line 166 of file MethodCFMlpANN.h.