37#ifndef ROOT_Math_PdfFuncMathCore
38#define ROOT_Math_PdfFuncMathCore
85 if (x < 0 || x > 1.0)
return 0;
88 if (
a < 1)
return std::numeric_limits<double>::infinity();
89 else if (
a > 1)
return 0;
90 else if (
a == 1)
return b;
94 if (
b < 1)
return std::numeric_limits<double>::infinity();
95 else if (
b > 1)
return 0;
96 else if (
b == 1)
return a;
151 if (
n < 0)
return 0.0;
152 if (p < 0 || p > 1.0)
return 0.0;
177 double gammahalf = gamma/2.0;
178 return gammahalf/(
M_PI * ((
x-x0)*(
x-x0) + gammahalf*gammahalf));
233 if (
x == x0 &&
a == 0)
return 0.5;
258 if (
sigma < 0.)
return 0.;
259 double z = (
x - mean)/
sigma;
260 if (alpha < 0) z = -z;
261 double abs_alpha = std::abs(alpha);
266 return std::exp(- 0.5 * z * z);
268 double nDivAlpha =
n/abs_alpha;
269 double AA = std::exp(-0.5*abs_alpha*abs_alpha);
270 double B = nDivAlpha -abs_alpha;
271 double arg = nDivAlpha/(B-z);
272 return AA * std::pow(arg,
n);
282 if (
sigma < 0.)
return 0.;
283 if (
n <= 1)
return std::numeric_limits<double>::quiet_NaN();
284 double abs_alpha = std::abs(alpha);
285 double C =
n/abs_alpha * 1./(
n-1.) * std::exp(-alpha*alpha/2.);
287 double N = 1./(
sigma*(C+D));
311 return lambda * std::exp (-lambda * (
x-x0));
337 return std::numeric_limits<double>::quiet_NaN();
342 + (
n/2 -1) * std::log(
x-x0) - ((
n+
m)/2) * std::log(
m +
n*(
x-x0)) );
363 inline double gamma_pdf(
double x,
double alpha,
double theta,
double x0 = 0) {
368 }
else if ((
x-x0) == 0) {
376 }
else if (alpha == 1) {
377 return std::exp(-(
x-x0)/theta)/theta;
379 return std::exp((alpha - 1) * std::log((
x-x0)/theta) - (
x-x0)/theta -
ROOT::Math::lgamma(alpha))/theta;
404 double tmp = (
x-x0)/
sigma;
405 return (1.0/(std::sqrt(2 *
M_PI) * std::fabs(
sigma))) * std::exp(-tmp*tmp/2);
431 inline double bigaussian_pdf(
double x,
double y,
double sigmax = 1,
double sigmay = 1,
double rho = 0,
double x0 = 0,
double y0 = 0) {
432 double u = (
x-x0)/sigmax;
433 double v = (
y-y0)/sigmay;
434 double c = 1. - rho*rho;
435 double z = u*u - 2.*rho*u*
v +
v*
v;
436 return 1./(2 *
M_PI * sigmax * sigmay * std::sqrt(
c) ) * std::exp(- z / (2. *
c) );
461 double landau_pdf(
double x,
double xi = 1,
double x0 = 0);
487 double tmp = (std::log((
x-x0)) -
m)/s;
488 return 1.0 / ((
x-x0) * std::fabs(s) * std::sqrt(2 *
M_PI)) * std::exp(-(tmp * tmp) /2);
512 double tmp = (
x-x0)/
sigma;
513 return (1.0/(std::sqrt(2 *
M_PI) * std::fabs(
sigma))) * std::exp(-tmp*tmp/2);
535 if (
n > 0 && mu >= 0)
540 return std::exp(-mu);
543 return std::numeric_limits<double>::quiet_NaN();
567 * std::pow ((1.0 + (
x-x0)*(
x-x0)/
r), -(
r + 1.0)/2.0);
593 if ((
x-x0) <
b && (
x-x0) >=
a)
winID h TVirtualViewer3D TVirtualGLPainter p
Option_t Option_t TPoint TPoint const char GetTextMagnitude GetFillStyle GetLineColor GetLineWidth GetMarkerStyle GetTextAlign GetTextColor GetTextSize void char Point_t Rectangle_t WindowAttributes_t Float_t r
double uniform_pdf(double x, double a, double b, double x0=0)
Probability density function of the uniform (flat) distribution.
double bigaussian_pdf(double x, double y, double sigmax=1, double sigmay=1, double rho=0, double x0=0, double y0=0)
Probability density function of the bi-dimensional (Gaussian) distribution.
double normal_pdf(double x, double sigma=1, double x0=0)
Probability density function of the normal (Gaussian) distribution.
double lognormal_pdf(double x, double m, double s, double x0=0)
Probability density function of the lognormal distribution.
double binomial_pdf(unsigned int k, double p, unsigned int n)
Probability density function of the binomial distribution.
double fdistribution_pdf(double x, double n, double m, double x0=0)
Probability density function of the F-distribution.
double negative_binomial_pdf(unsigned int k, double p, double n)
Probability density function of the negative binomial distribution.
double gamma_pdf(double x, double alpha, double theta, double x0=0)
Probability density function of the gamma distribution.
double landau_pdf(double x, double xi=1, double x0=0)
Probability density function of the Landau distribution:
double exponential_pdf(double x, double lambda, double x0=0)
Probability density function of the exponential distribution.
double gaussian_pdf(double x, double sigma=1, double x0=0)
Probability density function of the normal (Gaussian) distribution.
double chisquared_pdf(double x, double r, double x0=0)
Probability density function of the distribution with degrees of freedom.
double breitwigner_pdf(double x, double gamma, double x0=0)
Probability density function of Breit-Wigner distribution, which is similar, just a different definit...
double crystalball_function(double x, double alpha, double n, double sigma, double mean=0)
Crystal ball function.
double crystalball_pdf(double x, double alpha, double n, double sigma, double mean=0)
pdf definition of the crystal_ball which is defined only for n > 1 otherwise integral is diverging
double beta_pdf(double x, double a, double b)
Probability density function of the beta distribution.
double poisson_pdf(unsigned int n, double mu)
Probability density function of the Poisson distribution.
double cauchy_pdf(double x, double b=1, double x0=0)
Probability density function of the Cauchy distribution which is also called Lorentzian distribution.
double tdistribution_pdf(double x, double r, double x0=0)
Probability density function of Student's t-distribution.
double lgamma(double x)
Calculates the logarithm of the gamma function.
double erf(double x)
Error function encountered in integrating the normal distribution.
Namespace for new Math classes and functions.
double log1p(double x)
declarations for functions which are not implemented by some compilers
This file contains a specialised ROOT message handler to test for diagnostic in unit tests.