72 printf(
"trd2 : dx1=%f, dx2=%f, dy1=%f, dy2=%f, dz=%f\n",
92 printf(
"trd2 : dx1=%f, dx2=%f, dy1=%f, dy2=%f, dz=%f\n",
153 norm[0] = norm[1] = 0;
154 norm[2] = (dir[2]>=0)?1:-1;
162 norm[0] = (point[0]>0)?calf:(-calf);
165 Double_t dot = norm[0]*dir[0]+norm[1]*dir[1]+norm[2]*dir[2];
178 distx = 0.5*(
fDy1+
fDy2)-fy*point[2];
183 norm[1] = (point[1]>0)?calf:(-calf);
185 Double_t dot = norm[0]*dir[0]+norm[1]*dir[1]+norm[2]*dir[2];
216 if (iact<3 && safe) {
235 dist[0]=-(point[2]+
fDz)/dir[2];
236 }
else if (dir[2]>0) {
237 dist[0]=(
fDz-point[2])/dir[2];
239 if (dist[0]<=0)
return 0.0;
241 cn = -dir[0]+fx*dir[2];
243 dist[1] = point[0]+distx;
244 if (dist[1]<=0)
return 0.0;
247 cn = dir[0]+fx*dir[2];
250 if (s<=0)
return 0.0;
252 if (s<dist[1]) dist[1] = s;
255 cn = -dir[1]+fy*dir[2];
257 dist[2] = point[1]+disty;
258 if (dist[2]<=0)
return 0.0;
261 cn = dir[1]+fy*dir[2];
264 if (s<=0)
return 0.0;
266 if (s<dist[2]) dist[2] = s;
277 if (iact<3 && safe) {
297 if (point[2]<=-
fDz) {
303 xnew = point[0]+snxt*dir[0];
305 ynew = point[1]+snxt*dir[1];
308 }
else if (point[2]>=
fDz) {
314 xnew = point[0]+snxt*dir[0];
316 ynew = point[1]+snxt*dir[1];
321 if (point[0]<=-distx) {
322 cn = -dir[0]+fx*dir[2];
325 Double_t snxt = (point[0]+distx)/cn;
327 znew = point[2]+snxt*dir[2];
330 ynew = point[1]+snxt*dir[1];
334 if (point[0]>=distx) {
335 cn = dir[0]+fx*dir[2];
338 Double_t snxt = (distx-point[0])/cn;
340 znew = point[2]+snxt*dir[2];
343 ynew = point[1]+snxt*dir[1];
348 if (point[1]<=-disty) {
349 cn = -dir[1]+fy*dir[2];
352 Double_t snxt = (point[1]+disty)/cn;
354 znew = point[2]+snxt*dir[2];
357 xnew = point[0]+snxt*dir[0];
361 if (point[1]>=disty) {
362 cn = dir[1]+fy*dir[2];
365 Double_t snxt = (disty-point[1])/cn;
367 znew = point[2]+snxt*dir[2];
370 xnew = point[0]+snxt*dir[0];
376 if (safz<safx && safz<safy) {
422 memset(normals, 0, 9*
sizeof(
Double_t));
424 if (point[0]>distx) {
434 if (point[1]>disty) {
464 normals[0]=-normals[0];
469 normals[4]=-normals[4];
474 normals[8]=-normals[8];
494 Double_t zmin, zmax, dx1n, dx2n, dy1n, dy2n;
499 Warning(
"Divide",
"dividing a Trd2 on X not implemented");
502 Warning(
"Divide",
"dividing a Trd2 on Y not implemented");
509 for (
id=0;
id<ndiv;
id++) {
510 zmin = start+
id*step;
511 zmax = start+(
id+1)*step;
516 shape =
new TGeoTrd2(dx1n, dx2n, dy1n, dy2n, step/2.);
525 Error(
"Divide",
"Wrong axis type for division");
546 Error(
"GetFittingBox",
"cannot handle parametrized rotated volumes");
553 Error(
"GetFittingBox",
"wrong matrix - parametrized box is outside this");
558 dd[0] = parambox->
GetDX();
559 dd[1] = parambox->
GetDY();
560 dd[2] = parambox->
GetDZ();
565 Error(
"GetFittingBox",
"wrong matrix");
569 if (dd[0]>=0 && dd[1]>=0) {
581 dd[0] = dx0-fx*z-origin[0];
582 dd[1] = dy0-fy*z-origin[1];
584 dd[0] =
TMath::Min(dd[0], dx0-fx*z-origin[0]);
585 dd[1] =
TMath::Min(dd[1], dy0-fy*z-origin[1]);
586 if (dd[0]<0 || dd[1]<0) {
587 Error(
"GetFittingBox",
"wrong matrix");
604 Error(
"GetMakeRuntimeShape",
"invalid mother");
619 return (
new TGeoTrd2(dx1, dx2, dy1, dy2, dz));
627 printf(
"*** Shape %s: TGeoTrd2 ***\n",
GetName());
628 printf(
" dx1 = %11.5f\n",
fDx1);
629 printf(
" dx2 = %11.5f\n",
fDx2);
630 printf(
" dy1 = %11.5f\n",
fDy1);
631 printf(
" dy2 = %11.5f\n",
fDy2);
632 printf(
" dz = %11.5f\n",
fDz);
633 printf(
" Bounding box:\n");
652 else saf[1]=(distx-
TMath::Abs(point[0]))*calf;
657 distx = 0.5*(
fDy1+
fDy2)-fy*point[2];
659 else saf[2]=(distx-
TMath::Abs(point[1]))*calf;
662 for (
Int_t i=0; i<3; i++) saf[i]=-saf[i];
673 out <<
" dx1 = " <<
fDx1 <<
";" << std::endl;
674 out <<
" dx2 = " <<
fDx2 <<
";" << std::endl;
675 out <<
" dy1 = " <<
fDy1 <<
";" << std::endl;
676 out <<
" dy2 = " <<
fDy2 <<
";" << std::endl;
677 out <<
" dz = " <<
fDZ <<
";" << std::endl;
678 out <<
" TGeoShape *" <<
GetPointerName() <<
" = new TGeoTrd2(\"" <<
GetName() <<
"\", dx1,dx2,dy1,dy2,dz);" << std::endl;
Option_t Option_t TPoint TPoint const char GetTextMagnitude GetFillStyle GetLineColor GetLineWidth GetMarkerStyle GetTextAlign GetTextColor GetTextSize id
Option_t Option_t TPoint TPoint const char GetTextMagnitude GetFillStyle GetLineColor GetLineWidth GetMarkerStyle GetTextAlign GetTextColor GetTextSize void char Point_t points
R__EXTERN TGeoManager * gGeoManager
virtual const Double_t * GetOrigin() const
virtual void InspectShape() const
Prints shape parameters.
virtual Double_t GetDX() const
virtual Double_t GetDZ() const
virtual void Sizeof3D() const
virtual Double_t GetDY() const
virtual void GetBoundingCylinder(Double_t *param) const
Fill vector param[4] with the bounding cylinder parameters.
TGeoVolumeMulti * MakeVolumeMulti(const char *name, TGeoMedium *medium)
Make a TGeoVolumeMulti handling a list of volumes.
Geometrical transformation package.
Bool_t IsRotation() const
virtual void LocalToMaster(const Double_t *local, Double_t *master) const
convert a point by multiplying its column vector (x, y, z, 1) to matrix inverse
Node containing an offset.
Base finder class for patterns.
void SetDivIndex(Int_t index)
Base abstract class for all shapes.
void SetShapeBit(UInt_t f, Bool_t set)
Equivalent of TObject::SetBit.
const char * GetPointerName() const
Provide a pointer name containing uid.
virtual const char * GetName() const
Get the shape name.
static Double_t Tolerance()
Bool_t TestShapeBit(UInt_t f) const
A trapezoid with only X varying with Z.
virtual Int_t GetFittingBox(const TGeoBBox *parambox, TGeoMatrix *mat, Double_t &dx, Double_t &dy, Double_t &dz) const
Fills real parameters of a positioned box inside this. Returns 0 if successful.
virtual void ComputeNormal_v(const Double_t *points, const Double_t *dirs, Double_t *norms, Int_t vecsize)
Compute the normal for an array o points so that norm.dot.dir is positive Input: Arrays of point coor...
virtual void SetPoints(Double_t *points) const
create trd2 mesh points
virtual TGeoVolume * Divide(TGeoVolume *voldiv, const char *divname, Int_t iaxis, Int_t ndiv, Double_t start, Double_t step)
Divide this trd2 shape belonging to volume "voldiv" into ndiv volumes called divname,...
virtual TGeoShape * GetMakeRuntimeShape(TGeoShape *mother, TGeoMatrix *mat) const
in case shape has some negative parameters, these has to be computed in order to fit the mother
virtual void InspectShape() const
print shape parameters
virtual ~TGeoTrd2()
destructor
virtual void DistFromOutside_v(const Double_t *points, const Double_t *dirs, Double_t *dists, Int_t vecsize, Double_t *step) const
Compute distance from array of input points having directions specified by dirs. Store output in dist...
virtual Double_t GetAxisRange(Int_t iaxis, Double_t &xlo, Double_t &xhi) const
Get range of shape for a given axis.
virtual void DistFromInside_v(const Double_t *points, const Double_t *dirs, Double_t *dists, Int_t vecsize, Double_t *step) const
Compute distance from array of input points having directions specified by dirs. Store output in dist...
virtual void ComputeBBox()
compute bounding box for a trd2
virtual void Sizeof3D() const
fill size of this 3-D object
virtual Bool_t Contains(const Double_t *point) const
test if point is inside this shape check Z range
void GetOppositeCorner(const Double_t *point, Int_t inorm, Double_t *vertex, Double_t *normals) const
get the opposite corner of the intersected face
void SetVertex(Double_t *vertex) const
set vertex of a corner according to visibility flags
virtual Double_t Safety(const Double_t *point, Bool_t in=kTRUE) const
computes the closest distance from given point to this shape, according to option.
virtual void SetDimensions(Double_t *param)
set arb8 params in one step :
virtual void Contains_v(const Double_t *points, Bool_t *inside, Int_t vecsize) const
Check the inside status for each of the points in the array.
virtual Double_t DistFromOutside(const Double_t *point, const Double_t *dir, Int_t iact=1, Double_t step=TGeoShape::Big(), Double_t *safe=nullptr) const
Compute distance from outside point to surface of the trd2 Boundary safe algorithm.
virtual void ComputeNormal(const Double_t *point, const Double_t *dir, Double_t *norm)
Compute normal to closest surface from POINT.
virtual void SavePrimitive(std::ostream &out, Option_t *option="")
Save a primitive as a C++ statement(s) on output stream "out".
void GetVisibleCorner(const Double_t *point, Double_t *vertex, Double_t *normals) const
get the most visible corner from outside point and the normals
virtual Double_t DistFromInside(const Double_t *point, const Double_t *dir, Int_t iact=1, Double_t step=TGeoShape::Big(), Double_t *safe=nullptr) const
Compute distance from inside point to surface of the trd2 Boundary safe algorithm.
virtual Double_t Capacity() const
Computes capacity of the shape in [length^3].
virtual void GetBoundingCylinder(Double_t *param) const
Fill vector param[4] with the bounding cylinder parameters.
virtual void Safety_v(const Double_t *points, const Bool_t *inside, Double_t *safe, Int_t vecsize) const
Compute safe distance from each of the points in the input array.
void AddVolume(TGeoVolume *vol)
Add a volume with valid shape to the list of volumes.
TGeoVolume, TGeoVolumeMulti, TGeoVolumeAssembly are the volume classes.
void AddNodeOffset(TGeoVolume *vol, Int_t copy_no, Double_t offset=0, Option_t *option="")
Add a division node to the list of nodes.
TGeoMedium * GetMedium() const
void SetFinder(TGeoPatternFinder *finder)
Int_t GetNdaughters() const
TObject * At(Int_t idx) const override
R__ALWAYS_INLINE Bool_t TestBit(UInt_t f) const
virtual const char * ClassName() const
Returns name of class to which the object belongs.
virtual void Warning(const char *method, const char *msgfmt,...) const
Issue warning message.
void SetBit(UInt_t f, Bool_t set)
Set or unset the user status bits as specified in f.
virtual void Error(const char *method, const char *msgfmt,...) const
Issue error message.
const char * Data() const
Long64_t LocMin(Long64_t n, const T *a)
Returns index of array with the minimum element.
Short_t Max(Short_t a, Short_t b)
Returns the largest of a and b.
T1 Sign(T1 a, T2 b)
Returns a value with the magnitude of a and the sign of b.
Long64_t LocMax(Long64_t n, const T *a)
Returns index of array with the maximum element.
Double_t Sqrt(Double_t x)
Returns the square root of x.
Short_t Min(Short_t a, Short_t b)
Returns the smallest of a and b.
Short_t Abs(Short_t d)
Returns the absolute value of parameter Short_t d.