Logo ROOT  
Reference Guide
 
All Classes Namespaces Files Functions Variables Typedefs Enumerations Enumerator Properties Friends Macros Modules Pages
Loading...
Searching...
No Matches
TMVAMulticlass.C File Reference

Detailed Description

View in nbviewer Open in SWAN
This macro provides a simple example for the training and testing of the TMVA multiclass classification

  • Project : TMVA - a Root-integrated toolkit for multivariate data analysis
  • Package : TMVA
  • Root Macro: TMVAMulticlass
==> Start TMVAMulticlass
--- TMVAMulticlass: Using input file: ./files/tmva_multiclass_example.root
DataSetInfo : [dataset] : Added class "Signal"
: Add Tree TreeS of type Signal with 2000 events
DataSetInfo : [dataset] : Added class "bg0"
: Add Tree TreeB0 of type bg0 with 2000 events
DataSetInfo : [dataset] : Added class "bg1"
: Add Tree TreeB1 of type bg1 with 2000 events
DataSetInfo : [dataset] : Added class "bg2"
: Add Tree TreeB2 of type bg2 with 2000 events
: Dataset[dataset] : Class index : 0 name : Signal
: Dataset[dataset] : Class index : 1 name : bg0
: Dataset[dataset] : Class index : 2 name : bg1
: Dataset[dataset] : Class index : 3 name : bg2
Factory : Booking method: ␛[1mBDTG␛[0m
:
: the option NegWeightTreatment=InverseBoostNegWeights does not exist for BoostType=Grad
: --> change to new default NegWeightTreatment=Pray
: Rebuilding Dataset dataset
: Building event vectors for type 2 Signal
: Dataset[dataset] : create input formulas for tree TreeS
: Building event vectors for type 2 bg0
: Dataset[dataset] : create input formulas for tree TreeB0
: Building event vectors for type 2 bg1
: Dataset[dataset] : create input formulas for tree TreeB1
: Building event vectors for type 2 bg2
: Dataset[dataset] : create input formulas for tree TreeB2
DataSetFactory : [dataset] : Number of events in input trees
:
:
:
:
: Number of training and testing events
: ---------------------------------------------------------------------------
: Signal -- training events : 1000
: Signal -- testing events : 1000
: Signal -- training and testing events: 2000
: bg0 -- training events : 1000
: bg0 -- testing events : 1000
: bg0 -- training and testing events: 2000
: bg1 -- training events : 1000
: bg1 -- testing events : 1000
: bg1 -- training and testing events: 2000
: bg2 -- training events : 1000
: bg2 -- testing events : 1000
: bg2 -- training and testing events: 2000
:
DataSetInfo : Correlation matrix (Signal):
: ----------------------------------------
: var1 var2 var3 var4
: var1: +1.000 +0.397 +0.623 +0.832
: var2: +0.397 +1.000 +0.716 +0.737
: var3: +0.623 +0.716 +1.000 +0.859
: var4: +0.832 +0.737 +0.859 +1.000
: ----------------------------------------
DataSetInfo : Correlation matrix (bg0):
: ----------------------------------------
: var1 var2 var3 var4
: var1: +1.000 +0.365 +0.592 +0.811
: var2: +0.365 +1.000 +0.708 +0.740
: var3: +0.592 +0.708 +1.000 +0.859
: var4: +0.811 +0.740 +0.859 +1.000
: ----------------------------------------
DataSetInfo : Correlation matrix (bg1):
: ----------------------------------------
: var1 var2 var3 var4
: var1: +1.000 +0.407 +0.610 +0.834
: var2: +0.407 +1.000 +0.710 +0.741
: var3: +0.610 +0.710 +1.000 +0.851
: var4: +0.834 +0.741 +0.851 +1.000
: ----------------------------------------
DataSetInfo : Correlation matrix (bg2):
: ----------------------------------------
: var1 var2 var3 var4
: var1: +1.000 -0.647 -0.016 -0.013
: var2: -0.647 +1.000 +0.015 +0.002
: var3: -0.016 +0.015 +1.000 -0.024
: var4: -0.013 +0.002 -0.024 +1.000
: ----------------------------------------
DataSetFactory : [dataset] :
:
Factory : Booking method: ␛[1mMLP␛[0m
:
MLP : Building Network.
: Initializing weights
Factory : Booking method: ␛[1mPDEFoam␛[0m
:
Factory : Booking method: ␛[1mDL_CPU␛[0m
:
: Parsing option string:
: ... "!H:V:ErrorStrategy=CROSSENTROPY:VarTransform=N:WeightInitialization=XAVIERUNIFORM:Architecture=GPU:Layout=TANH|100,TANH|50,TANH|10,LINEAR:TrainingStrategy=Optimizer=ADAM,LearningRate=1e-3,TestRepetitions=1,ConvergenceSteps=10,BatchSize=100,MaxEpochs=20"
: The following options are set:
: - By User:
: <none>
: - Default:
: Boost_num: "0" [Number of times the classifier will be boosted]
: Parsing option string:
: ... "!H:V:ErrorStrategy=CROSSENTROPY:VarTransform=N:WeightInitialization=XAVIERUNIFORM:Architecture=GPU:Layout=TANH|100,TANH|50,TANH|10,LINEAR:TrainingStrategy=Optimizer=ADAM,LearningRate=1e-3,TestRepetitions=1,ConvergenceSteps=10,BatchSize=100,MaxEpochs=20"
: The following options are set:
: - By User:
: V: "True" [Verbose output (short form of "VerbosityLevel" below - overrides the latter one)]
: VarTransform: "N" [List of variable transformations performed before training, e.g., "D_Background,P_Signal,G,N_AllClasses" for: "Decorrelation, PCA-transformation, Gaussianisation, Normalisation, each for the given class of events ('AllClasses' denotes all events of all classes, if no class indication is given, 'All' is assumed)"]
: H: "False" [Print method-specific help message]
: Layout: "TANH|100,TANH|50,TANH|10,LINEAR" [Layout of the network.]
: ErrorStrategy: "CROSSENTROPY" [Loss function: Mean squared error (regression) or cross entropy (binary classification).]
: WeightInitialization: "XAVIERUNIFORM" [Weight initialization strategy]
: Architecture: "GPU" [Which architecture to perform the training on.]
: TrainingStrategy: "Optimizer=ADAM,LearningRate=1e-3,TestRepetitions=1,ConvergenceSteps=10,BatchSize=100,MaxEpochs=20" [Defines the training strategies.]
: - Default:
: VerbosityLevel: "Default" [Verbosity level]
: CreateMVAPdfs: "False" [Create PDFs for classifier outputs (signal and background)]
: IgnoreNegWeightsInTraining: "False" [Events with negative weights are ignored in the training (but are included for testing and performance evaluation)]
: InputLayout: "0|0|0" [The Layout of the input]
: BatchLayout: "0|0|0" [The Layout of the batch]
: RandomSeed: "0" [Random seed used for weight initialization and batch shuffling]
: ValidationSize: "20%" [Part of the training data to use for validation. Specify as 0.2 or 20% to use a fifth of the data set as validation set. Specify as 100 to use exactly 100 events. (Default: 20%)]
DL_CPU : [dataset] : Create Transformation "N" with events from all classes.
:
: Transformation, Variable selection :
: Input : variable 'var1' <---> Output : variable 'var1'
: Input : variable 'var2' <---> Output : variable 'var2'
: Input : variable 'var3' <---> Output : variable 'var3'
: Input : variable 'var4' <---> Output : variable 'var4'
␛[31m<ERROR> : CUDA backend not enabled. Please make sure you have CUDA installed and it was successfully detected by CMAKE by using -Dtmva-gpu=On ␛[0m
: Will now use instead the CPU architecture !
: Will now use the CPU architecture with BLAS and IMT support !
Factory : ␛[1mTrain all methods␛[0m
Factory : [dataset] : Create Transformation "I" with events from all classes.
:
: Transformation, Variable selection :
: Input : variable 'var1' <---> Output : variable 'var1'
: Input : variable 'var2' <---> Output : variable 'var2'
: Input : variable 'var3' <---> Output : variable 'var3'
: Input : variable 'var4' <---> Output : variable 'var4'
Factory : [dataset] : Create Transformation "D" with events from all classes.
:
: Transformation, Variable selection :
: Input : variable 'var1' <---> Output : variable 'var1'
: Input : variable 'var2' <---> Output : variable 'var2'
: Input : variable 'var3' <---> Output : variable 'var3'
: Input : variable 'var4' <---> Output : variable 'var4'
Factory : [dataset] : Create Transformation "P" with events from all classes.
:
: Transformation, Variable selection :
: Input : variable 'var1' <---> Output : variable 'var1'
: Input : variable 'var2' <---> Output : variable 'var2'
: Input : variable 'var3' <---> Output : variable 'var3'
: Input : variable 'var4' <---> Output : variable 'var4'
Factory : [dataset] : Create Transformation "G" with events from all classes.
:
: Transformation, Variable selection :
: Input : variable 'var1' <---> Output : variable 'var1'
: Input : variable 'var2' <---> Output : variable 'var2'
: Input : variable 'var3' <---> Output : variable 'var3'
: Input : variable 'var4' <---> Output : variable 'var4'
Factory : [dataset] : Create Transformation "D" with events from all classes.
:
: Transformation, Variable selection :
: Input : variable 'var1' <---> Output : variable 'var1'
: Input : variable 'var2' <---> Output : variable 'var2'
: Input : variable 'var3' <---> Output : variable 'var3'
: Input : variable 'var4' <---> Output : variable 'var4'
TFHandler_Factory : Variable Mean RMS [ Min Max ]
: -----------------------------------------------------------
: var1: 0.047647 1.0025 [ -3.6592 3.2645 ]
: var2: 0.32647 1.0646 [ -3.6891 3.7877 ]
: var3: 0.11493 1.1230 [ -4.5727 4.5640 ]
: var4: -0.076531 1.2652 [ -4.8486 5.0412 ]
: -----------------------------------------------------------
: Preparing the Decorrelation transformation...
TFHandler_Factory : Variable Mean RMS [ Min Max ]
: -----------------------------------------------------------
: var1: 0.082544 1.0000 [ -3.6274 3.1017 ]
: var2: 0.36715 1.0000 [ -3.3020 3.4950 ]
: var3: 0.066865 1.0000 [ -2.9882 3.3086 ]
: var4: -0.20593 1.0000 [ -3.3088 2.8423 ]
: -----------------------------------------------------------
: Preparing the Principle Component (PCA) transformation...
TFHandler_Factory : Variable Mean RMS [ Min Max ]
: -----------------------------------------------------------
: var1: 5.7502e-10 1.8064 [ -8.0344 7.8312 ]
: var2:-1.6078e-11 0.90130 [ -2.6765 2.7523 ]
: var3: 3.0841e-10 0.73386 [ -2.6572 2.2255 ]
: var4:-2.6886e-10 0.62168 [ -1.7384 2.2297 ]
: -----------------------------------------------------------
: Preparing the Gaussian transformation...
: Preparing the Decorrelation transformation...
TFHandler_Factory : Variable Mean RMS [ Min Max ]
: -----------------------------------------------------------
: var1: 0.013510 1.0000 [ -2.6520 6.2074 ]
: var2: 0.0096839 1.0000 [ -2.8402 6.3073 ]
: var3: 0.010397 1.0000 [ -3.0251 5.8860 ]
: var4: 0.0053980 1.0000 [ -3.0998 5.7078 ]
: -----------------------------------------------------------
: Ranking input variables (method unspecific)...
Factory : Train method: BDTG for Multiclass classification
:
: Training 1000 Decision Trees ... patience please
: Elapsed time for training with 4000 events: 5.47 sec
: Dataset[dataset] : Create results for training
: Dataset[dataset] : Multiclass evaluation of BDTG on training sample
: Dataset[dataset] : Elapsed time for evaluation of 4000 events: 1.65 sec
: Creating multiclass response histograms...
: Creating multiclass performance histograms...
: Creating xml weight file: ␛[0;36mdataset/weights/TMVAMulticlass_BDTG.weights.xml␛[0m
: Creating standalone class: ␛[0;36mdataset/weights/TMVAMulticlass_BDTG.class.C␛[0m
: TMVAMulticlass.root:/dataset/Method_BDT/BDTG
Factory : Training finished
:
Factory : Train method: MLP for Multiclass classification
:
: Training Network
:
: Elapsed time for training with 4000 events: 24.1 sec
: Dataset[dataset] : Create results for training
: Dataset[dataset] : Multiclass evaluation of MLP on training sample
: Dataset[dataset] : Elapsed time for evaluation of 4000 events: 0.0205 sec
: Creating multiclass response histograms...
: Creating multiclass performance histograms...
: Creating xml weight file: ␛[0;36mdataset/weights/TMVAMulticlass_MLP.weights.xml␛[0m
: Creating standalone class: ␛[0;36mdataset/weights/TMVAMulticlass_MLP.class.C␛[0m
: Write special histos to file: TMVAMulticlass.root:/dataset/Method_MLP/MLP
Factory : Training finished
:
Factory : Train method: PDEFoam for Multiclass classification
:
: Build up multiclass foam 0
: Elapsed time: 0.665 sec
: Build up multiclass foam 1
: Elapsed time: 0.669 sec
: Build up multiclass foam 2
: Elapsed time: 0.676 sec
: Build up multiclass foam 3
: Elapsed time: 0.472 sec
: Elapsed time for training with 4000 events: 2.65 sec
: Dataset[dataset] : Create results for training
: Dataset[dataset] : Multiclass evaluation of PDEFoam on training sample
: Dataset[dataset] : Elapsed time for evaluation of 4000 events: 0.149 sec
: Creating multiclass response histograms...
: Creating multiclass performance histograms...
: Creating xml weight file: ␛[0;36mdataset/weights/TMVAMulticlass_PDEFoam.weights.xml␛[0m
: writing foam MultiClassFoam0 to file
: writing foam MultiClassFoam1 to file
: writing foam MultiClassFoam2 to file
: writing foam MultiClassFoam3 to file
: Foams written to file: ␛[0;36mdataset/weights/TMVAMulticlass_PDEFoam.weights_foams.root␛[0m
: Creating standalone class: ␛[0;36mdataset/weights/TMVAMulticlass_PDEFoam.class.C␛[0m
Factory : Training finished
:
Factory : Train method: DL_CPU for Multiclass classification
:
TFHandler_DL_CPU : Variable Mean RMS [ Min Max ]
: -----------------------------------------------------------
: var1: 0.070769 0.28960 [ -1.0000 1.0000 ]
: var2: 0.074130 0.28477 [ -1.0000 1.0000 ]
: var3: 0.026106 0.24582 [ -1.0000 1.0000 ]
: var4: -0.034951 0.25587 [ -1.0000 1.0000 ]
: -----------------------------------------------------------
: Start of deep neural network training on CPU using MT, nthreads = 1
:
TFHandler_DL_CPU : Variable Mean RMS [ Min Max ]
: -----------------------------------------------------------
: var1: 0.070769 0.28960 [ -1.0000 1.0000 ]
: var2: 0.074130 0.28477 [ -1.0000 1.0000 ]
: var3: 0.026106 0.24582 [ -1.0000 1.0000 ]
: var4: -0.034951 0.25587 [ -1.0000 1.0000 ]
: -----------------------------------------------------------
: ***** Deep Learning Network *****
DEEP NEURAL NETWORK: Depth = 4 Input = ( 1, 1, 4 ) Batch size = 100 Loss function = C
Layer 0 DENSE Layer: ( Input = 4 , Width = 100 ) Output = ( 1 , 100 , 100 ) Activation Function = Tanh
Layer 1 DENSE Layer: ( Input = 100 , Width = 50 ) Output = ( 1 , 100 , 50 ) Activation Function = Tanh
Layer 2 DENSE Layer: ( Input = 50 , Width = 10 ) Output = ( 1 , 100 , 10 ) Activation Function = Tanh
Layer 3 DENSE Layer: ( Input = 10 , Width = 4 ) Output = ( 1 , 100 , 4 ) Activation Function = Identity
: Using 3200 events for training and 800 for testing
: Compute initial loss on the validation data
: Training phase 1 of 1: Optimizer ADAM (beta1=0.9,beta2=0.999,eps=1e-07) Learning rate = 0.001 regularization 0 minimum error = 0.690087
: --------------------------------------------------------------
: Epoch | Train Err. Val. Err. t(s)/epoch t(s)/Loss nEvents/s Conv. Steps
: --------------------------------------------------------------
: Start epoch iteration ...
: 1 Minimum Test error found - save the configuration
: 1 | 0.610001 0.534418 0.0771389 0.00668132 45417.4 0
: 2 Minimum Test error found - save the configuration
: 2 | 0.50115 0.46764 0.0777517 0.0066562 45009.9 0
: 3 Minimum Test error found - save the configuration
: 3 | 0.459096 0.434423 0.0783488 0.00673334 44683.1 0
: 4 Minimum Test error found - save the configuration
: 4 | 0.432475 0.408532 0.0788187 0.00679436 44429.4 0
: 5 Minimum Test error found - save the configuration
: 5 | 0.410669 0.388664 0.0791245 0.00679229 44240.3 0
: 6 Minimum Test error found - save the configuration
: 6 | 0.392822 0.373739 0.0794571 0.00684441 44069.4 0
: 7 Minimum Test error found - save the configuration
: 7 | 0.379452 0.362485 0.0797781 0.00688272 43898.5 0
: 8 Minimum Test error found - save the configuration
: 8 | 0.36776 0.353549 0.0800716 0.00700205 43793.9 0
: 9 Minimum Test error found - save the configuration
: 9 | 0.357336 0.343097 0.0803073 0.00692332 43606.3 0
: 10 Minimum Test error found - save the configuration
: 10 | 0.34901 0.336095 0.0803229 0.0069303 43601.1 0
: 11 Minimum Test error found - save the configuration
: 11 | 0.342042 0.330982 0.0804597 0.00695681 43535.7 0
: 12 Minimum Test error found - save the configuration
: 12 | 0.335918 0.322015 0.0819198 0.00698234 42702.3 0
: 13 Minimum Test error found - save the configuration
: 13 | 0.329942 0.316913 0.0806916 0.00694488 43391.7 0
: 14 Minimum Test error found - save the configuration
: 14 | 0.324358 0.31165 0.0812559 0.00702322 43107.7 0
: 15 Minimum Test error found - save the configuration
: 15 | 0.319489 0.308584 0.0811433 0.00700688 43163.7 0
: 16 Minimum Test error found - save the configuration
: 16 | 0.314742 0.300798 0.0814305 0.00701602 43002.4 0
: 17 | 0.31049 0.30211 0.0810719 0.00693351 43162.5 1
: 18 Minimum Test error found - save the configuration
: 18 | 0.30755 0.294604 0.081252 0.00704584 43123.1 0
: 19 | 0.304244 0.295254 0.0811693 0.00694858 43114.6 1
: 20 Minimum Test error found - save the configuration
: 20 | 0.300225 0.288021 0.0813627 0.00705675 43065.2 0
:
: Elapsed time for training with 4000 events: 1.64 sec
: Dataset[dataset] : Create results for training
: Dataset[dataset] : Multiclass evaluation of DL_CPU on training sample
: Dataset[dataset] : Elapsed time for evaluation of 4000 events: 0.112 sec
: Creating multiclass response histograms...
: Creating multiclass performance histograms...
: Creating xml weight file: ␛[0;36mdataset/weights/TMVAMulticlass_DL_CPU.weights.xml␛[0m
: Creating standalone class: ␛[0;36mdataset/weights/TMVAMulticlass_DL_CPU.class.C␛[0m
Factory : Training finished
:
: Ranking input variables (method specific)...
BDTG : Ranking result (top variable is best ranked)
: --------------------------------------
: Rank : Variable : Variable Importance
: --------------------------------------
: 1 : var4 : 3.117e-01
: 2 : var1 : 2.504e-01
: 3 : var2 : 2.430e-01
: 4 : var3 : 1.949e-01
: --------------------------------------
MLP : Ranking result (top variable is best ranked)
: -----------------------------
: Rank : Variable : Importance
: -----------------------------
: 1 : var4 : 6.076e+01
: 2 : var2 : 4.824e+01
: 3 : var1 : 2.116e+01
: 4 : var3 : 1.692e+01
: -----------------------------
PDEFoam : Ranking result (top variable is best ranked)
: --------------------------------------
: Rank : Variable : Variable Importance
: --------------------------------------
: 1 : var4 : 2.991e-01
: 2 : var1 : 2.930e-01
: 3 : var3 : 2.365e-01
: 4 : var2 : 1.714e-01
: --------------------------------------
: No variable ranking supplied by classifier: DL_CPU
TH1.Print Name = TrainingHistory_DL_CPU_trainingError, Entries= 0, Total sum= 7.44877
TH1.Print Name = TrainingHistory_DL_CPU_valError, Entries= 0, Total sum= 7.07357
Factory : === Destroy and recreate all methods via weight files for testing ===
:
: Reading weight file: ␛[0;36mdataset/weights/TMVAMulticlass_BDTG.weights.xml␛[0m
: Reading weight file: ␛[0;36mdataset/weights/TMVAMulticlass_MLP.weights.xml␛[0m
MLP : Building Network.
: Initializing weights
: Reading weight file: ␛[0;36mdataset/weights/TMVAMulticlass_PDEFoam.weights.xml␛[0m
: Read foams from file: ␛[0;36mdataset/weights/TMVAMulticlass_PDEFoam.weights_foams.root␛[0m
: Reading weight file: ␛[0;36mdataset/weights/TMVAMulticlass_DL_CPU.weights.xml␛[0m
Factory : ␛[1mTest all methods␛[0m
Factory : Test method: BDTG for Multiclass classification performance
:
: Dataset[dataset] : Create results for testing
: Dataset[dataset] : Multiclass evaluation of BDTG on testing sample
: Dataset[dataset] : Elapsed time for evaluation of 4000 events: 0.999 sec
: Creating multiclass response histograms...
: Creating multiclass performance histograms...
Factory : Test method: MLP for Multiclass classification performance
:
: Dataset[dataset] : Create results for testing
: Dataset[dataset] : Multiclass evaluation of MLP on testing sample
: Dataset[dataset] : Elapsed time for evaluation of 4000 events: 0.0167 sec
: Creating multiclass response histograms...
: Creating multiclass performance histograms...
Factory : Test method: PDEFoam for Multiclass classification performance
:
: Dataset[dataset] : Create results for testing
: Dataset[dataset] : Multiclass evaluation of PDEFoam on testing sample
: Dataset[dataset] : Elapsed time for evaluation of 4000 events: 0.131 sec
: Creating multiclass response histograms...
: Creating multiclass performance histograms...
Factory : Test method: DL_CPU for Multiclass classification performance
:
: Dataset[dataset] : Create results for testing
: Dataset[dataset] : Multiclass evaluation of DL_CPU on testing sample
: Dataset[dataset] : Elapsed time for evaluation of 4000 events: 0.113 sec
: Creating multiclass response histograms...
: Creating multiclass performance histograms...
Factory : ␛[1mEvaluate all methods␛[0m
: Evaluate multiclass classification method: BDTG
: Creating multiclass response histograms...
: Creating multiclass performance histograms...
: Creating multiclass response histograms...
: Creating multiclass performance histograms...
TFHandler_BDTG : Variable Mean RMS [ Min Max ]
: -----------------------------------------------------------
: var1: 0.070153 1.0224 [ -4.0592 3.5808 ]
: var2: 0.30372 1.0460 [ -3.6952 3.7877 ]
: var3: 0.12152 1.1222 [ -3.6800 3.9200 ]
: var4: -0.072602 1.2766 [ -4.8486 4.2221 ]
: -----------------------------------------------------------
: Evaluate multiclass classification method: MLP
: Creating multiclass response histograms...
: Creating multiclass performance histograms...
: Creating multiclass response histograms...
: Creating multiclass performance histograms...
TFHandler_MLP : Variable Mean RMS [ Min Max ]
: -----------------------------------------------------------
: var1: 0.070153 1.0224 [ -4.0592 3.5808 ]
: var2: 0.30372 1.0460 [ -3.6952 3.7877 ]
: var3: 0.12152 1.1222 [ -3.6800 3.9200 ]
: var4: -0.072602 1.2766 [ -4.8486 4.2221 ]
: -----------------------------------------------------------
: Evaluate multiclass classification method: PDEFoam
: Creating multiclass response histograms...
: Creating multiclass performance histograms...
: Creating multiclass response histograms...
: Creating multiclass performance histograms...
TFHandler_PDEFoam : Variable Mean RMS [ Min Max ]
: -----------------------------------------------------------
: var1: 0.070153 1.0224 [ -4.0592 3.5808 ]
: var2: 0.30372 1.0460 [ -3.6952 3.7877 ]
: var3: 0.12152 1.1222 [ -3.6800 3.9200 ]
: var4: -0.072602 1.2766 [ -4.8486 4.2221 ]
: -----------------------------------------------------------
: Evaluate multiclass classification method: DL_CPU
: Creating multiclass response histograms...
: Creating multiclass performance histograms...
: Creating multiclass response histograms...
: Creating multiclass performance histograms...
TFHandler_DL_CPU : Variable Mean RMS [ Min Max ]
: -----------------------------------------------------------
: var1: 0.077270 0.29534 [ -1.1155 1.0914 ]
: var2: 0.068045 0.27981 [ -1.0016 1.0000 ]
: var3: 0.027548 0.24565 [ -0.80459 0.85902 ]
: var4: -0.034157 0.25816 [ -1.0000 0.83435 ]
: -----------------------------------------------------------
TFHandler_DL_CPU : Variable Mean RMS [ Min Max ]
: -----------------------------------------------------------
: var1: 0.077270 0.29534 [ -1.1155 1.0914 ]
: var2: 0.068045 0.27981 [ -1.0016 1.0000 ]
: var3: 0.027548 0.24565 [ -0.80459 0.85902 ]
: var4: -0.034157 0.25816 [ -1.0000 0.83435 ]
: -----------------------------------------------------------
:
: 1-vs-rest performance metrics per class
: -------------------------------------------------------------------------------------------------------
:
: Considers the listed class as signal and the other classes
: as background, reporting the resulting binary performance.
: A score of 0.820 (0.850) means 0.820 was acheived on the
: test set and 0.850 on the training set.
:
: Dataset MVA Method ROC AUC Sig eff@B=0.01 Sig eff@B=0.10 Sig eff@B=0.30
: Name: / Class: test (train) test (train) test (train) test (train)
:
: dataset BDTG
: ------------------------------
: Signal 0.968 (0.978) 0.508 (0.605) 0.914 (0.945) 0.990 (0.996)
: bg0 0.910 (0.931) 0.256 (0.288) 0.737 (0.791) 0.922 (0.956)
: bg1 0.947 (0.954) 0.437 (0.511) 0.833 (0.856) 0.971 (0.971)
: bg2 0.978 (0.982) 0.585 (0.678) 0.951 (0.956) 0.999 (0.996)
:
: dataset MLP
: ------------------------------
: Signal 0.970 (0.975) 0.596 (0.632) 0.933 (0.938) 0.988 (0.993)
: bg0 0.929 (0.934) 0.303 (0.298) 0.787 (0.793) 0.949 (0.961)
: bg1 0.962 (0.967) 0.467 (0.553) 0.881 (0.906) 0.985 (0.992)
: bg2 0.975 (0.979) 0.629 (0.699) 0.929 (0.940) 0.998 (0.998)
:
: dataset PDEFoam
: ------------------------------
: Signal 0.916 (0.928) 0.294 (0.382) 0.744 (0.782) 0.932 (0.952)
: bg0 0.837 (0.848) 0.109 (0.147) 0.519 (0.543) 0.833 (0.851)
: bg1 0.890 (0.902) 0.190 (0.226) 0.606 (0.646) 0.923 (0.929)
: bg2 0.967 (0.972) 0.510 (0.527) 0.900 (0.926) 0.993 (0.998)
:
: dataset DL_CPU
: ------------------------------
: Signal 0.965 (0.966) 0.372 (0.468) 0.924 (0.921) 0.993 (0.992)
: bg0 0.918 (0.920) 0.293 (0.289) 0.756 (0.742) 0.933 (0.935)
: bg1 0.948 (0.947) 0.324 (0.345) 0.864 (0.853) 0.973 (0.970)
: bg2 0.917 (0.919) 0.508 (0.517) 0.752 (0.757) 0.907 (0.915)
:
: -------------------------------------------------------------------------------------------------------
:
:
: Confusion matrices for all methods
: -------------------------------------------------------------------------------------------------------
:
: Does a binary comparison between the two classes given by a
: particular row-column combination. In each case, the class
: given by the row is considered signal while the class given
: by the column index is considered background.
:
: === Showing confusion matrix for method : BDTG
: (Signal Efficiency for Background Efficiency 0.01%)
: ---------------------------------------------------
: Signal bg0 bg1 bg2
: test (train) test (train) test (train) test (train)
: Signal - 0.497 (0.373) 0.710 (0.693) 0.680 (0.574)
: bg0 0.271 (0.184) - 0.239 (0.145) 0.705 (0.667)
: bg1 0.855 (0.766) 0.369 (0.222) - 0.587 (0.578)
: bg2 0.714 (0.585) 0.705 (0.581) 0.648 (0.601) -
:
: (Signal Efficiency for Background Efficiency 0.10%)
: ---------------------------------------------------
: Signal bg0 bg1 bg2
: test (train) test (train) test (train) test (train)
: Signal - 0.911 (0.853) 0.991 (0.981) 0.945 (0.913)
: bg0 0.833 (0.774) - 0.654 (0.582) 0.930 (0.901)
: bg1 0.971 (0.980) 0.716 (0.681) - 0.871 (0.862)
: bg2 0.976 (0.951) 0.971 (0.973) 0.936 (0.941) -
:
: (Signal Efficiency for Background Efficiency 0.30%)
: ---------------------------------------------------
: Signal bg0 bg1 bg2
: test (train) test (train) test (train) test (train)
: Signal - 0.978 (0.957) 0.999 (1.000) 0.998 (0.997)
: bg0 0.965 (0.926) - 0.874 (0.835) 0.991 (0.976)
: bg1 1.000 (0.999) 0.916 (0.894) - 0.988 (0.985)
: bg2 0.999 (0.999) 0.997 (0.999) 0.996 (0.997) -
:
: === Showing confusion matrix for method : MLP
: (Signal Efficiency for Background Efficiency 0.01%)
: ---------------------------------------------------
: Signal bg0 bg1 bg2
: test (train) test (train) test (train) test (train)
: Signal - 0.465 (0.490) 0.974 (0.953) 0.632 (0.498)
: bg0 0.320 (0.269) - 0.224 (0.250) 0.655 (0.627)
: bg1 0.943 (0.920) 0.341 (0.275) - 0.632 (0.687)
: bg2 0.665 (0.642) 0.697 (0.680) 0.706 (0.598) -
:
: (Signal Efficiency for Background Efficiency 0.10%)
: ---------------------------------------------------
: Signal bg0 bg1 bg2
: test (train) test (train) test (train) test (train)
: Signal - 0.865 (0.854) 0.996 (0.994) 0.908 (0.907)
: bg0 0.784 (0.776) - 0.666 (0.655) 0.919 (0.895)
: bg1 0.998 (0.998) 0.791 (0.785) - 0.912 (0.902)
: bg2 0.943 (0.903) 0.946 (0.939) 0.924 (0.928) -
:
: (Signal Efficiency for Background Efficiency 0.30%)
: ---------------------------------------------------
: Signal bg0 bg1 bg2
: test (train) test (train) test (train) test (train)
: Signal - 0.978 (0.964) 0.997 (0.997) 0.993 (0.986)
: bg0 0.952 (0.924) - 0.936 (0.928) 0.992 (0.990)
: bg1 1.000 (1.000) 0.945 (0.936) - 0.998 (0.995)
: bg2 0.994 (0.985) 0.998 (0.998) 0.998 (0.998) -
:
: === Showing confusion matrix for method : PDEFoam
: (Signal Efficiency for Background Efficiency 0.01%)
: ---------------------------------------------------
: Signal bg0 bg1 bg2
: test (train) test (train) test (train) test (train)
: Signal - 0.289 (0.233) 0.467 (0.436) 0.421 (0.332)
: bg0 0.100 (0.045) - 0.132 (0.116) 0.540 (0.313)
: bg1 0.209 (0.434) 0.153 (0.092) - 0.347 (0.323)
: bg2 0.560 (0.552) 0.445 (0.424) 0.501 (0.506) -
:
: (Signal Efficiency for Background Efficiency 0.10%)
: ---------------------------------------------------
: Signal bg0 bg1 bg2
: test (train) test (train) test (train) test (train)
: Signal - 0.665 (0.640) 0.854 (0.822) 0.807 (0.790)
: bg0 0.538 (0.520) - 0.415 (0.374) 0.843 (0.833)
: bg1 0.885 (0.886) 0.542 (0.491) - 0.728 (0.646)
: bg2 0.928 (0.890) 0.956 (0.959) 0.847 (0.895) -
:
: (Signal Efficiency for Background Efficiency 0.30%)
: ---------------------------------------------------
: Signal bg0 bg1 bg2
: test (train) test (train) test (train) test (train)
: Signal - 0.898 (0.878) 0.971 (0.950) 0.982 (0.975)
: bg0 0.828 (0.810) - 0.696 (0.676) 0.954 (0.951)
: bg1 0.951 (0.966) 0.803 (0.745) - 0.958 (0.966)
: bg2 0.998 (0.991) 0.998 (0.996) 0.998 (0.993) -
:
: === Showing confusion matrix for method : DL_CPU
: (Signal Efficiency for Background Efficiency 0.01%)
: ---------------------------------------------------
: Signal bg0 bg1 bg2
: test (train) test (train) test (train) test (train)
: Signal - 0.421 (0.538) 0.941 (0.955) 0.376 (0.223)
: bg0 0.321 (0.293) - 0.240 (0.210) 0.479 (0.459)
: bg1 0.907 (0.897) 0.212 (0.196) - 0.384 (0.425)
: bg2 0.542 (0.506) 0.521 (0.531) 0.500 (0.481) -
:
: (Signal Efficiency for Background Efficiency 0.10%)
: ---------------------------------------------------
: Signal bg0 bg1 bg2
: test (train) test (train) test (train) test (train)
: Signal - 0.891 (0.905) 0.997 (0.995) 0.789 (0.736)
: bg0 0.731 (0.754) - 0.704 (0.730) 0.784 (0.800)
: bg1 0.990 (0.991) 0.737 (0.732) - 0.776 (0.795)
: bg2 0.803 (0.799) 0.758 (0.754) 0.719 (0.715) -
:
: (Signal Efficiency for Background Efficiency 0.30%)
: ---------------------------------------------------
: Signal bg0 bg1 bg2
: test (train) test (train) test (train) test (train)
: Signal - 0.980 (0.982) 1.000 (0.999) 0.989 (0.990)
: bg0 0.929 (0.931) - 0.918 (0.924) 0.968 (0.961)
: bg1 1.000 (0.999) 0.954 (0.962) - 0.945 (0.952)
: bg2 0.958 (0.936) 0.935 (0.924) 0.851 (0.865) -
:
: -------------------------------------------------------------------------------------------------------
:
Dataset:dataset : Created tree 'TestTree' with 4000 events
:
Dataset:dataset : Created tree 'TrainTree' with 4000 events
:
Factory : ␛[1mThank you for using TMVA!␛[0m
: ␛[1mFor citation information, please visit: http://tmva.sf.net/citeTMVA.html␛[0m
==> Wrote root file: TMVAMulticlass.root
==> TMVAMulticlass is done!
#include <cstdlib>
#include <iostream>
#include <map>
#include <string>
#include "TFile.h"
#include "TTree.h"
#include "TString.h"
#include "TSystem.h"
#include "TROOT.h"
#include "TMVA/Tools.h"
#include "TMVA/Factory.h"
using namespace TMVA;
void TMVAMulticlass( TString myMethodList = "" )
{
// This loads the library
// to get access to the GUI and all tmva macros
//
// TString tmva_dir(TString(gRootDir) + "/tmva");
// if(gSystem->Getenv("TMVASYS"))
// tmva_dir = TString(gSystem->Getenv("TMVASYS"));
// gROOT->SetMacroPath(tmva_dir + "/test/:" + gROOT->GetMacroPath() );
// gROOT->ProcessLine(".L TMVAMultiClassGui.C");
//---------------------------------------------------------------
// Default MVA methods to be trained + tested
std::map<std::string,int> Use;
Use["MLP"] = 1;
Use["BDTG"] = 1;
#ifdef R__HAS_TMVAGPU
Use["DL_CPU"] = 1;
Use["DL_GPU"] = 1;
#else
Use["DL_CPU"] = 1;
Use["DL_GPU"] = 0;
#endif
Use["FDA_GA"] = 0;
Use["PDEFoam"] = 1;
//---------------------------------------------------------------
std::cout << std::endl;
std::cout << "==> Start TMVAMulticlass" << std::endl;
if (myMethodList != "") {
for (std::map<std::string,int>::iterator it = Use.begin(); it != Use.end(); it++) it->second = 0;
std::vector<TString> mlist = TMVA::gTools().SplitString( myMethodList, ',' );
for (UInt_t i=0; i<mlist.size(); i++) {
std::string regMethod(mlist[i]);
if (Use.find(regMethod) == Use.end()) {
std::cout << "Method \"" << regMethod << "\" not known in TMVA under this name. Choose among the following:" << std::endl;
for (std::map<std::string,int>::iterator it = Use.begin(); it != Use.end(); it++) std::cout << it->first << " ";
std::cout << std::endl;
return;
}
Use[regMethod] = 1;
}
}
// Create a new root output file.
TString outfileName = "TMVAMulticlass.root";
TFile* outputFile = TFile::Open( outfileName, "RECREATE" );
TMVA::Factory *factory = new TMVA::Factory( "TMVAMulticlass", outputFile,
"!V:!Silent:Color:DrawProgressBar:Transformations=I;D;P;G,D:AnalysisType=multiclass" );
TMVA::DataLoader *dataloader=new TMVA::DataLoader("dataset");
dataloader->AddVariable( "var1", 'F' );
dataloader->AddVariable( "var2", "Variable 2", "", 'F' );
dataloader->AddVariable( "var3", "Variable 3", "units", 'F' );
dataloader->AddVariable( "var4", "Variable 4", "units", 'F' );
TFile *input(0);
TString fname = "./tmva_example_multiclass.root";
if (!gSystem->AccessPathName( fname )) {
input = TFile::Open( fname ); // check if file in local directory exists
}
else {
input = TFile::Open("http://root.cern.ch/files/tmva_multiclass_example.root", "CACHEREAD");
}
if (!input) {
std::cout << "ERROR: could not open data file" << std::endl;
exit(1);
}
std::cout << "--- TMVAMulticlass: Using input file: " << input->GetName() << std::endl;
TTree *signalTree = (TTree*)input->Get("TreeS");
TTree *background0 = (TTree*)input->Get("TreeB0");
TTree *background1 = (TTree*)input->Get("TreeB1");
TTree *background2 = (TTree*)input->Get("TreeB2");
gROOT->cd( outfileName+TString(":/") );
dataloader->AddTree (signalTree,"Signal");
dataloader->AddTree (background0,"bg0");
dataloader->AddTree (background1,"bg1");
dataloader->AddTree (background2,"bg2");
dataloader->PrepareTrainingAndTestTree( "", "SplitMode=Random:NormMode=NumEvents:!V" );
if (Use["BDTG"]) // gradient boosted decision trees
factory->BookMethod( dataloader, TMVA::Types::kBDT, "BDTG", "!H:!V:NTrees=1000:BoostType=Grad:Shrinkage=0.10:UseBaggedBoost:BaggedSampleFraction=0.50:nCuts=20:MaxDepth=2");
if (Use["MLP"]) // neural network
factory->BookMethod( dataloader, TMVA::Types::kMLP, "MLP", "!H:!V:NeuronType=tanh:NCycles=1000:HiddenLayers=N+5,5:TestRate=5:EstimatorType=MSE");
if (Use["FDA_GA"]) // functional discriminant with GA minimizer
factory->BookMethod( dataloader, TMVA::Types::kFDA, "FDA_GA", "H:!V:Formula=(0)+(1)*x0+(2)*x1+(3)*x2+(4)*x3:ParRanges=(-1,1);(-10,10);(-10,10);(-10,10);(-10,10):FitMethod=GA:PopSize=300:Cycles=3:Steps=20:Trim=True:SaveBestGen=1" );
if (Use["PDEFoam"]) // PDE-Foam approach
factory->BookMethod( dataloader, TMVA::Types::kPDEFoam, "PDEFoam", "!H:!V:TailCut=0.001:VolFrac=0.0666:nActiveCells=500:nSampl=2000:nBin=5:Nmin=100:Kernel=None:Compress=T" );
if (Use["DL_CPU"]) {
TString layoutString("Layout=TANH|100,TANH|50,TANH|10,LINEAR");
TString trainingStrategyString("TrainingStrategy=Optimizer=ADAM,LearningRate=1e-3,"
"TestRepetitions=1,ConvergenceSteps=10,BatchSize=100,MaxEpochs=20");
TString nnOptions("!H:V:ErrorStrategy=CROSSENTROPY:VarTransform=N:"
"WeightInitialization=XAVIERUNIFORM:Architecture=GPU");
nnOptions.Append(":");
nnOptions.Append(layoutString);
nnOptions.Append(":");
nnOptions.Append(trainingStrategyString);
factory->BookMethod(dataloader, TMVA::Types::kDL, "DL_CPU", nnOptions);
}
if (Use["DL_GPU"]) {
TString layoutString("Layout=TANH|100,TANH|50,TANH|10,LINEAR");
TString trainingStrategyString("TrainingStrategy=Optimizer=ADAM,LearningRate=1e-3,"
"TestRepetitions=1,ConvergenceSteps=10,BatchSize=100,MaxEpochs=20");
TString nnOptions("!H:V:ErrorStrategy=CROSSENTROPY:VarTransform=N:"
"WeightInitialization=XAVIERUNIFORM:Architecture=GPU");
nnOptions.Append(":");
nnOptions.Append(layoutString);
nnOptions.Append(":");
nnOptions.Append(trainingStrategyString);
factory->BookMethod(dataloader, TMVA::Types::kDL, "DL_GPU", nnOptions);
}
// Train MVAs using the set of training events
factory->TrainAllMethods();
// Evaluate all MVAs using the set of test events
factory->TestAllMethods();
// Evaluate and compare performance of all configured MVAs
factory->EvaluateAllMethods();
// --------------------------------------------------------------
// Save the output
outputFile->Close();
std::cout << "==> Wrote root file: " << outputFile->GetName() << std::endl;
std::cout << "==> TMVAMulticlass is done!" << std::endl;
delete factory;
delete dataloader;
// Launch the GUI for the root macros
if (!gROOT->IsBatch()) TMVAMultiClassGui( outfileName );
}
int main( int argc, char** argv )
{
// Select methods (don't look at this code - not of interest)
TString methodList;
for (int i=1; i<argc; i++) {
TString regMethod(argv[i]);
if(regMethod=="-b" || regMethod=="--batch") continue;
if (!methodList.IsNull()) methodList += TString(",");
methodList += regMethod;
}
TMVAMulticlass(methodList);
return 0;
}
int main()
Definition Prototype.cxx:12
unsigned int UInt_t
Definition RtypesCore.h:46
Option_t Option_t TPoint TPoint const char GetTextMagnitude GetFillStyle GetLineColor GetLineWidth GetMarkerStyle GetTextAlign GetTextColor GetTextSize void input
#define gROOT
Definition TROOT.h:405
R__EXTERN TSystem * gSystem
Definition TSystem.h:560
A ROOT file is a suite of consecutive data records (TKey instances) with a well defined format.
Definition TFile.h:51
static Bool_t SetCacheFileDir(ROOT::Internal::TStringView cacheDir, Bool_t operateDisconnected=kTRUE, Bool_t forceCacheread=kFALSE)
Definition TFile.h:323
static TFile * Open(const char *name, Option_t *option="", const char *ftitle="", Int_t compress=ROOT::RCompressionSetting::EDefaults::kUseCompiledDefault, Int_t netopt=0)
Create / open a file.
Definition TFile.cxx:4053
void Close(Option_t *option="") override
Close a file.
Definition TFile.cxx:914
void PrepareTrainingAndTestTree(const TCut &cut, const TString &splitOpt)
prepare the training and test trees -> same cuts for signal and background
void AddTree(TTree *tree, const TString &className, Double_t weight=1.0, const TCut &cut="", Types::ETreeType tt=Types::kMaxTreeType)
void AddVariable(const TString &expression, const TString &title, const TString &unit, char type='F', Double_t min=0, Double_t max=0)
user inserts discriminating variable in data set info
This is the main MVA steering class.
Definition Factory.h:80
void TrainAllMethods()
Iterates through all booked methods and calls training.
Definition Factory.cxx:1114
MethodBase * BookMethod(DataLoader *loader, TString theMethodName, TString methodTitle, TString theOption="")
Book a classifier or regression method.
Definition Factory.cxx:352
void TestAllMethods()
Evaluates all booked methods on the testing data and adds the output to the Results in the corresponi...
Definition Factory.cxx:1271
void EvaluateAllMethods(void)
Iterates over all MVAs that have been booked, and calls their evaluation methods.
Definition Factory.cxx:1376
static Tools & Instance()
Definition Tools.cxx:71
std::vector< TString > SplitString(const TString &theOpt, const char separator) const
splits the option string at 'separator' and fills the list 'splitV' with the primitive strings
Definition Tools.cxx:1199
@ kPDEFoam
Definition Types.h:94
const char * GetName() const override
Returns name of object.
Definition TNamed.h:47
Basic string class.
Definition TString.h:139
Bool_t IsNull() const
Definition TString.h:418
virtual Bool_t AccessPathName(const char *path, EAccessMode mode=kFileExists)
Returns FALSE if one can access a file using the specified access mode.
Definition TSystem.cxx:1299
A TTree represents a columnar dataset.
Definition TTree.h:79
create variable transformations
Tools & gTools()
void TMVAMultiClassGui(const char *fName="TMVAMulticlass.root", TString dataset="")
Author
Andreas Hoecker

Definition in file TMVAMulticlass.C.