GSLNLSMinimizer class for Non Linear Least Square fitting It Uses the Levemberg-Marquardt algorithm from GSL Non Linear Least Square fitting.
Definition at line 59 of file GSLNLSMinimizer.h.
Public Member Functions | |
GSLNLSMinimizer (int type=0) | |
Default constructor. | |
~GSLNLSMinimizer () override | |
Destructor (no operations) | |
double | CovMatrix (unsigned int, unsigned int) const override |
return covariance matrices elements if the variable is fixed the matrix is zero The ordering of the variables is the same as in errors | |
int | CovMatrixStatus () const override |
return covariance matrix status | |
double | Edm () const override |
return expected distance reached from the minimum | |
const double * | Errors () const override |
return errors at the minimum | |
const double * | MinGradient () const override |
return pointer to gradient values at the minimum | |
bool | Minimize () override |
method to perform the minimization | |
unsigned int | NCalls () const override |
number of function calls to reach the minimum | |
bool | ProvidesError () const override |
number of free variables (real dimension of the problem) this is <= Function().NDim() which is the total | |
void | SetFunction (const ROOT::Math::IMultiGenFunction &func) override |
set the function to minimize | |
void | SetFunction (const ROOT::Math::IMultiGradFunction &func) override |
set gradient the function to minimize | |
Public Member Functions inherited from ROOT::Math::BasicMinimizer | |
BasicMinimizer () | |
Default constructor. | |
~BasicMinimizer () override | |
Destructor. | |
bool | FixVariable (unsigned int ivar) override |
fix an existing variable | |
bool | GetVariableSettings (unsigned int ivar, ROOT::Fit::ParameterSettings &varObj) const override |
get variable settings in a variable object (like ROOT::Fit::ParamsSettings) | |
const ROOT::Math::IMultiGradFunction * | GradObjFunction () const |
return pointer to used gradient object function (NULL if gradient is not supported) | |
bool | IsFixedVariable (unsigned int ivar) const override |
query if an existing variable is fixed (i.e. | |
double | MinValue () const override |
return minimum function value | |
unsigned int | NDim () const override |
number of dimensions | |
unsigned int | NFree () const override |
number of free variables (real dimension of the problem) | |
virtual unsigned int | NPar () const |
total number of parameter defined | |
const ROOT::Math::IMultiGenFunction * | ObjFunction () const |
return pointer to used objective function | |
void | PrintResult () const |
print result of minimization | |
bool | ReleaseVariable (unsigned int ivar) override |
release an existing variable | |
bool | SetFixedVariable (unsigned int, const std::string &, double) override |
set fixed variable (override if minimizer supports them ) | |
bool | SetLimitedVariable (unsigned int ivar, const std::string &name, double val, double step, double, double) override |
set upper/lower limited variable (override if minimizer supports them ) | |
bool | SetLowerLimitedVariable (unsigned int ivar, const std::string &name, double val, double step, double lower) override |
set lower limit variable (override if minimizer supports them ) | |
bool | SetUpperLimitedVariable (unsigned int ivar, const std::string &name, double val, double step, double upper) override |
set upper limit variable (override if minimizer supports them ) | |
bool | SetVariable (unsigned int ivar, const std::string &name, double val, double step) override |
set free variable | |
bool | SetVariableLimits (unsigned int ivar, double lower, double upper) override |
set the limits of an already existing variable | |
bool | SetVariableLowerLimit (unsigned int ivar, double lower) override |
set the lower-limit of an already existing variable | |
bool | SetVariableStepSize (unsigned int ivar, double step) override |
set the step size of an already existing variable | |
bool | SetVariableUpperLimit (unsigned int ivar, double upper) override |
set the upper-limit of an already existing variable | |
bool | SetVariableValue (unsigned int ivar, double val) override |
set the value of an existing variable | |
bool | SetVariableValues (const double *x) override |
set the values of all existing variables (array must be dimensioned to the size of existing parameters) | |
virtual const double * | StepSizes () const |
accessor methods | |
int | VariableIndex (const std::string &name) const override |
get index of variable given a variable given a name return -1 if variable is not found | |
std::string | VariableName (unsigned int ivar) const override |
get name of variables (override if minimizer support storing of variable names) | |
const double * | X () const override |
return pointer to X values at the minimum | |
Public Member Functions inherited from ROOT::Math::Minimizer | |
Minimizer () | |
Default constructor. | |
virtual | ~Minimizer () |
Destructor (no operations) | |
virtual void | Clear () |
reset for consecutive minimization - implement if needed | |
virtual bool | Contour (unsigned int ivar, unsigned int jvar, unsigned int &npoints, double *xi, double *xj) |
find the contour points (xi, xj) of the function for parameter ivar and jvar around the minimum The contour will be find for value of the function = Min + ErrorUp(); | |
virtual double | Correlation (unsigned int i, unsigned int j) const |
return correlation coefficient between variable i and j. | |
double | ErrorDef () const |
return the statistical scale used for calculate the error is typically 1 for Chi2 and 0.5 for likelihood minimization | |
virtual bool | GetCovMatrix (double *covMat) const |
Fill the passed array with the covariance matrix elements if the variable is fixed or const the value is zero. | |
virtual bool | GetHessianMatrix (double *hMat) const |
Fill the passed array with the Hessian matrix elements The Hessian matrix is the matrix of the second derivatives and is the inverse of the covariance matrix If the variable is fixed or const the values for that variables are zero. | |
virtual bool | GetMinosError (unsigned int ivar, double &errLow, double &errUp, int option=0) |
minos error for variable i, return false if Minos failed or not supported and the lower and upper errors are returned in errLow and errUp An extra flag specifies if only the lower (option=-1) or the upper (option=+1) error calculation is run | |
virtual double | GlobalCC (unsigned int ivar) const |
return global correlation coefficient for variable i This is a number between zero and one which gives the correlation between the i-th parameter and that linear combination of all other parameters which is most strongly correlated with i. | |
virtual bool | Hesse () |
perform a full calculation of the Hessian matrix for error calculation | |
bool | IsValidError () const |
return true if Minimizer has performed a detailed error validation (e.g. run Hesse for Minuit) | |
unsigned int | MaxFunctionCalls () const |
max number of function calls | |
unsigned int | MaxIterations () const |
max iterations | |
virtual int | MinosStatus () const |
status code of Minos (to be re-implemented by the minimizers supporting Minos) | |
virtual unsigned int | NIterations () const |
number of iterations to reach the minimum | |
virtual MinimizerOptions | Options () const |
retrieve the minimizer options (implement derived class if needed) | |
double | Precision () const |
precision of minimizer in the evaluation of the objective function ( a value <=0 corresponds to the let the minimizer choose its default one) | |
int | PrintLevel () const |
minimizer configuration parameters | |
virtual void | PrintResults () |
return reference to the objective function virtual const ROOT::Math::IGenFunction & Function() const = 0; | |
virtual bool | Scan (unsigned int ivar, unsigned int &nstep, double *x, double *y, double xmin=0, double xmax=0) |
scan function minimum for variable i. | |
void | SetDefaultOptions () |
reset the default options (defined in MinimizerOptions) | |
void | SetErrorDef (double up) |
set scale for calculating the errors | |
void | SetExtraOptions (const IOptions &extraOptions) |
set only the extra options | |
virtual void | SetHessianFunction (std::function< bool(const std::vector< double > &, double *)>) |
set the function implementing Hessian computation (re-implemented by Minimizer using it) | |
void | SetMaxFunctionCalls (unsigned int maxfcn) |
set maximum of function calls | |
void | SetMaxIterations (unsigned int maxiter) |
set maximum iterations (one iteration can have many function calls) | |
void | SetOptions (const MinimizerOptions &opt) |
set all options in one go | |
void | SetPrecision (double prec) |
set in the minimizer the objective function evaluation precision ( a value <=0 means the minimizer will choose its optimal value automatically, i.e. | |
void | SetPrintLevel (int level) |
set print level | |
void | SetStrategy (int strategyLevel) |
set the strategy | |
void | SetTolerance (double tol) |
set the tolerance | |
void | SetValidError (bool on) |
flag to check if minimizer needs to perform accurate error analysis (e.g. run Hesse for Minuit) | |
virtual bool | SetVariableInitialRange (unsigned int, double, double) |
set the initial range of an existing variable | |
template<class VariableIterator > | |
int | SetVariables (const VariableIterator &begin, const VariableIterator &end) |
add variables . Return number of variables successfully added | |
int | Status () const |
status code of minimizer | |
int | Strategy () const |
strategy | |
double | Tolerance () const |
absolute tolerance | |
Protected Member Functions | |
template<class Func > | |
bool | DoMinimize (const Func &f) |
Internal method to perform minimization template on the type of method function. | |
Protected Member Functions inherited from ROOT::Math::BasicMinimizer | |
bool | CheckDimension () const |
bool | CheckObjFunction () const |
MinimTransformFunction * | CreateTransformation (std::vector< double > &startValues, const ROOT::Math::IMultiGradFunction *func=nullptr) |
void | SetFinalValues (const double *x, const MinimTransformFunction *func=nullptr) |
void | SetMinValue (double val) |
Private Member Functions | |
GSLNLSMinimizer (const GSLNLSMinimizer &) | |
Copy constructor. | |
GSLNLSMinimizer & | operator= (const GSLNLSMinimizer &rhs) |
Assignment operator. | |
Private Attributes | |
std::vector< double > | fCovMatrix |
double | fEdm |
std::vector< double > | fErrors |
ROOT::Math::GSLMultiFit * | fGSLMultiFit |
double | fLSTolerance |
unsigned int | fNCalls |
unsigned int | fNFree |
bool | fUseGradFunction = false |
Additional Inherited Members | |
Protected Attributes inherited from ROOT::Math::Minimizer | |
MinimizerOptions | fOptions |
minimizer options | |
int | fStatus |
status of minimizer | |
bool | fValidError |
flag to control if errors have been validated (Hesse has been run in case of Minuit) | |
#include <Math/GSLNLSMinimizer.h>
ROOT::Math::GSLNLSMinimizer::GSLNLSMinimizer | ( | int | type = 0 | ) |
Default constructor.
Definition at line 206 of file GSLNLSMinimizer.cxx.
|
override |
Destructor (no operations)
Definition at line 228 of file GSLNLSMinimizer.cxx.
|
inlineprivate |
Copy constructor.
Definition at line 79 of file GSLNLSMinimizer.h.
|
overridevirtual |
return covariance matrices elements if the variable is fixed the matrix is zero The ordering of the variables is the same as in errors
Reimplemented from ROOT::Math::Minimizer.
Definition at line 462 of file GSLNLSMinimizer.cxx.
|
overridevirtual |
return covariance matrix status
Reimplemented from ROOT::Math::Minimizer.
Definition at line 470 of file GSLNLSMinimizer.cxx.
|
protected |
Internal method to perform minimization template on the type of method function.
Definition at line 274 of file GSLNLSMinimizer.cxx.
|
inlineoverridevirtual |
return expected distance reached from the minimum
Reimplemented from ROOT::Math::Minimizer.
Definition at line 103 of file GSLNLSMinimizer.h.
|
inlineoverridevirtual |
return errors at the minimum
Reimplemented from ROOT::Math::Minimizer.
Definition at line 120 of file GSLNLSMinimizer.h.
|
overridevirtual |
return pointer to gradient values at the minimum
Reimplemented from ROOT::Math::Minimizer.
Definition at line 456 of file GSLNLSMinimizer.cxx.
|
overridevirtual |
method to perform the minimization
Reimplemented from ROOT::Math::BasicMinimizer.
Definition at line 253 of file GSLNLSMinimizer.cxx.
|
inlineoverridevirtual |
number of function calls to reach the minimum
Reimplemented from ROOT::Math::Minimizer.
Definition at line 110 of file GSLNLSMinimizer.h.
|
inlineprivate |
Assignment operator.
Definition at line 84 of file GSLNLSMinimizer.h.
|
inlineoverridevirtual |
number of free variables (real dimension of the problem) this is <= Function().NDim() which is the total
minimizer provides error and error matrix
Reimplemented from ROOT::Math::Minimizer.
Definition at line 117 of file GSLNLSMinimizer.h.
|
overridevirtual |
set the function to minimize
Reimplemented from ROOT::Math::BasicMinimizer.
Definition at line 235 of file GSLNLSMinimizer.cxx.
|
overridevirtual |
set gradient the function to minimize
Reimplemented from ROOT::Math::BasicMinimizer.
Definition at line 246 of file GSLNLSMinimizer.cxx.
|
private |
Definition at line 155 of file GSLNLSMinimizer.h.
|
private |
Definition at line 152 of file GSLNLSMinimizer.h.
|
private |
Definition at line 154 of file GSLNLSMinimizer.h.
|
private |
Definition at line 150 of file GSLNLSMinimizer.h.
|
private |
Definition at line 153 of file GSLNLSMinimizer.h.
|
private |
Definition at line 148 of file GSLNLSMinimizer.h.
|
private |
Definition at line 147 of file GSLNLSMinimizer.h.
|
private |
Definition at line 146 of file GSLNLSMinimizer.h.