Fitting multiple functions to different ranges of a 1-D histogram Example showing how to fit in a sub-range of an histogram A histogram is created and filled with the bin contents and errors defined in the table below.
Three Gaussians are fitted in sub-ranges of this histogram. A new function (a sum of 3 Gaussians) is fitted on another subrange Note that when fitting simple functions, such as Gaussians, the initial values of parameters are automatically computed by ROOT. In the more complicated case of the sum of 3 Gaussians, the initial values of parameters must be given. In this particular case, the initial values are taken from the result of the individual fits.
FCN=0.0848003 FROM MIGRAD STATUS=CONVERGED 105 CALLS 106 TOTAL
EDM=1.77382e-07 STRATEGY= 1 ERROR MATRIX ACCURATE
EXT PARAMETER STEP FIRST
NO. NAME VALUE ERROR SIZE DERIVATIVE
1 Constant 4.96664e+00 2.83221e+00 4.26889e-04 1.67619e-04
2 Mean 9.54663e+01 1.23905e+01 7.53972e-04 -2.63161e-04
3 Sigma 6.82779e+00 7.49131e+00 5.87496e-05 3.68521e-03
FCN=0.0771026 FROM MIGRAD STATUS=CONVERGED 72 CALLS 73 TOTAL
EDM=2.00364e-07 STRATEGY= 1 ERROR MATRIX ACCURATE
EXT PARAMETER STEP FIRST
NO. NAME VALUE ERROR SIZE DERIVATIVE
1 Constant 5.96312e+00 1.14355e+00 4.82019e-04 1.52951e-04
2 Mean 1.00467e+02 1.53372e+00 3.74926e-04 6.69980e-04
3 Sigma 3.54806e+00 1.16899e+00 3.22077e-05 3.86167e-03
FCN=0.0087702 FROM MIGRAD STATUS=CONVERGED 93 CALLS 94 TOTAL
EDM=5.57239e-07 STRATEGY= 1 ERROR MATRIX ACCURATE
EXT PARAMETER STEP FIRST
NO. NAME VALUE ERROR SIZE DERIVATIVE
1 Constant 9.12665e-01 4.37176e-01 1.46528e-04 2.91010e-04
2 Mean 1.16309e+02 8.37408e+00 3.57386e-03 -3.17966e-05
3 Sigma 8.38413e+00 1.84577e+01 4.99414e-04 -4.98793e-04
FCN=0.312817 FROM MIGRAD STATUS=CONVERGED 515 CALLS 516 TOTAL
EDM=1.73245e-07 STRATEGY= 1 ERROR MATRIX ACCURATE
EXT PARAMETER STEP FIRST
NO. NAME VALUE ERROR SIZE DERIVATIVE
1 p0 4.91145e+00 1.41387e+00 3.61239e-04 -3.22790e-04
2 p1 9.44525e+01 3.71612e+00 5.60861e-04 -6.78941e-05
3 p2 5.94796e+00 2.41732e+00 4.25396e-04 2.68176e-05
4 p3 3.22134e+00 3.11650e+00 5.86729e-04 -1.82620e-04
5 p4 1.01663e+02 1.67863e+00 5.56527e-04 3.95769e-04
6 p5 2.48454e+00 1.91461e+00 3.85832e-04 7.23818e-05
7 p6 9.11463e-01 3.68235e-01 1.45489e-04 5.77239e-04
8 p7 1.17582e+02 5.06329e+00 2.01798e-03 -8.25382e-05
9 p8 7.58627e+00 8.76000e+00 2.12468e-03 2.02614e-05
[ 4.96663958 95.46632975 6.8277931 5.9631179 100.46745499
3.54806038 0.91266549 116.30923996 8.38412804]
import ROOT
import numpy as np
n_x = 49
x = np.array( [ 1.913521, 1.953769, 2.347435, 2.883654, 3.493567, 4.047560,
4.337210, 4.364347, 4.563004, 5.054247, 5.194183, 5.380521, 5.303213,
5.384578, 5.563983, 5.728500, 5.685752, 5.080029, 4.251809, 3.372246,
2.207432, 1.227541, 0.8597788, 0.8220503, 0.8046592, 0.7684097, 0.7469761,
0.8019787, 0.8362375, 0.8744895, 0.9143721, 0.9462768, 0.9285364,
0.8954604, 0.8410891, 0.7853871, 0.7100883, 0.6938808, 0.7363682,
0.7032954, 0.6029015, 0.5600163, 0.7477068, 1.188785, 1.938228, 2.602717,
3.472962, 4.465014, 5.177035, ], dtype=np.float32,)
h = ROOT.TH1F("h", "Example of several fits in subranges", n_x, 85, 134)
h.SetMaximum(7)
for i, x_i in enumerate(x):
h.SetBinContent(i + 1, x[i])
par = np.zeros(9)
g1 = ROOT.TF1("g1", "gaus", 85, 95)
g2 = ROOT.TF1("g2", "gaus", 98, 108)
g3 = ROOT.TF1("g3", "gaus", 110, 121)
total = ROOT.TF1("total", "gaus(0)+gaus(3)+gaus(6)", 85, 125)
total.SetLineColor(2)
c = ROOT.TCanvas("multifit", "multifit", 800, 400)
h.Fit(g1, "R")
h.Fit(g2, "R+")
h.Fit(g3, "+", "", 110, 121);
g1.GetParameters(par[:3])
g2.GetParameters(par[3:6])
g3.GetParameters(par[6:])
print(par)
total.SetParameters(par)
h.Draw()
h.Fit(total, "R+")
c.SaveAs("multifit.png")
- Authors
- Jonas Rembser, Rene Brun (C++ version)
Definition in file multifit.py.