This tutorial requires FFT3 to be enabled.
[#1] INFO:Eval -- RooRealVar::setRange(mean) new range named 'refrange_fft_model' created with bounds [-3,3]
[#0] WARNING:Eval -- The FFT convolution 'model' will run with 50 bins. A decent accuracy for difficult convolutions is typically only reached with n >= 1000. Suggest to increase the number of bins of the observable 'mean'.
[#1] INFO:NumericIntegration -- RooRealIntegral::init(gx_Int[mean,x]) using numeric integrator RooIntegrator1D to calculate Int(mean)
[#1] INFO:NumericIntegration -- RooRealIntegral::init(model_mean_Int[mean]) using numeric integrator RooIntegrator1D to calculate Int(mean)
[#1] INFO:Caching -- RooAbsCachedPdf::getCache(model) creating new cache 0x55697892b680 with pdf gx_CONV_model_mean_CACHE_Obs[mean,x]_NORM_mean for nset (mean) with code 0
[#0] WARNING:Eval -- The FFT convolution 'model' will run with 50 bins. A decent accuracy for difficult convolutions is typically only reached with n >= 1000. Suggest to increase the number of bins of the observable 'mean'.
[#1] INFO:NumericIntegration -- RooRealIntegral::init(gx_Int[mean,x]) using numeric integrator RooIntegrator1D to calculate Int(mean)
[#1] INFO:NumericIntegration -- RooRealIntegral::init(model_mean_Int[mean]) using numeric integrator RooIntegrator1D to calculate Int(mean)
[#1] INFO:Caching -- RooAbsCachedPdf::getCache(model) creating new cache 0x556978766570 with pdf gx_CONV_model_mean_CACHE_Obs[x,mean]_NORM_x_mean for nset (x,mean) with code 1
[#0] WARNING:Eval -- The FFT convolution 'model' will run with 50 bins. A decent accuracy for difficult convolutions is typically only reached with n >= 1000. Suggest to increase the number of bins of the observable 'mean'.
[#1] INFO:Caching -- RooAbsCachedPdf::getCache(model) creating new cache 0x556979fdb620 with pdf gx_CONV_model_mean_CACHE_Obs[x,mean]_NORM_x_mean for nset (x,mean) with code 1 from preexisting content.
[#1] INFO:Minimization -- RooAbsMinimizerFcn::setOptimizeConst: activating const optimization
[#0] WARNING:Minimization -- RooAbsMinimizerFcn::synchronize: WARNING: no initial error estimate available for a: using 0.5
[#0] WARNING:Minimization -- RooAbsMinimizerFcn::synchronize: WARNING: no initial error estimate available for sigma: using 0.2
prevFCN = 2171.275755 a=2.012, sigma=0.5, [#1] INFO:NumericIntegration -- RooRealIntegral::init(gx_Int[mean,x]) using numeric integrator RooIntegrator1D to calculate Int(mean)
[#1] INFO:NumericIntegration -- RooRealIntegral::init(model_mean_Int[mean]) using numeric integrator RooIntegrator1D to calculate Int(mean)
prevFCN = 2171.275755 a=1.988,
prevFCN = 2171.275755 a=2.121,
prevFCN = 2171.861215 a=1.886,
prevFCN = 2172.184717 a=2.012,
prevFCN = 2171.275755 a=1.988,
prevFCN = 2171.275755 a=2, sigma=0.5047,
prevFCN = 2171.286528 sigma=0.4953,
prevFCN = 2171.267762 sigma=0.5029,
prevFCN = 2171.281998 sigma=0.4971,
prevFCN = 2171.270547 a=2.012, sigma=0.5,
prevFCN = 2171.275755 a=2.012,
prevFCN = 2171.275755 a=2.012,
prevFCN = 2171.275755 a=2.012,
prevFCN = 2171.275755 a=2.012,
prevFCN = 2171.275755 a=2.012,
prevFCN = 2171.275755 a=2.012,
prevFCN = 2171.275755 a=2.012,
prevFCN = 2171.275755 a=2.012,
prevFCN = 2171.275755 a=2.012,
prevFCN = 2171.275755 a=2.012,
prevFCN = 2171.275755 a=2.121,
prevFCN = 2171.861215 a=1.886,
prevFCN = 2172.184717 a=2.012,
prevFCN = 2171.275755 a=1.988,
prevFCN = 2171.275755 a=2.121,
prevFCN = 2171.861215 a=1.886,
prevFCN = 2172.184717 a=2, sigma=0.5029,
prevFCN = 2171.281998 sigma=0.4971,
prevFCN = 2171.270547 a=2.013, sigma=0.4843,
prevFCN = 2171.259881 a=2.009, sigma=0.4884,
prevFCN = 2171.260992 a=2.025, sigma=0.4843,
prevFCN = 2171.259881 a=2.001,
prevFCN = 2171.259881 a=2.134,
prevFCN = 2171.692149 a=1.898,
prevFCN = 2172.378568 a=2.025,
prevFCN = 2171.259881 a=2.001,
prevFCN = 2171.259881 a=2.013, sigma=0.4871,
prevFCN = 2171.26042 sigma=0.4815,
prevFCN = 2171.260367 sigma=0.4843,
prevFCN = 2171.259881 a=2.025,
prevFCN = 2171.259881 a=2.001,
prevFCN = 2171.259881 a=2.134,
prevFCN = 2171.692149 a=1.898,
prevFCN = 2172.378568 a=2.013, sigma=0.4871,
prevFCN = 2171.26042 sigma=0.4815,
prevFCN = 2171.260367 a=2.015, sigma=0.4843,
prevFCN = 2171.259881 a=2.011,
prevFCN = 2171.259881 a=2.013, sigma=0.4848,
prevFCN = 2171.259907 sigma=0.4837,
prevFCN = 2171.259896 a=2.134, sigma=0.4871,
prevFCN = 2171.720718 a=2.065, sigma=0.4512,
prevFCN = 2171.332894 a=2.03, sigma=0.473,
prevFCN = 2171.26812 a=2.02, sigma=0.4794,
prevFCN = 2171.261381 a=2.016, sigma=0.482,
prevFCN = 2171.260198 a=2.014, sigma=0.4832,
prevFCN = 2171.25995 a=2.014, sigma=0.4837,
prevFCN = 2171.259895 a=2.013, sigma=0.484,
prevFCN = 2171.259883 a=2.013, sigma=0.4841,
prevFCN = 2171.259881 a=2.013, sigma=0.4842,
prevFCN = 2171.25988 a=2.025,
prevFCN = 2171.25988 a=2.001,
prevFCN = 2171.25988 a=2.134,
prevFCN = 2171.691427 a=1.898,
prevFCN = 2172.379556 a=2.025,
prevFCN = 2171.25988 a=2.001,
prevFCN = 2171.25988 a=2.013, sigma=0.487,
prevFCN = 2171.260398 sigma=0.4814,
prevFCN = 2171.260398 sigma=0.4842,
prevFCN = 2171.25988 a=2.025,
prevFCN = 2171.25988 a=2.001,
prevFCN = 2171.25988 a=2.134,
prevFCN = 2171.691427 a=1.898,
prevFCN = 2172.379556 a=2.013, sigma=0.487,
prevFCN = 2171.260398 sigma=0.4814,
prevFCN = 2171.260398 a=2.015, sigma=0.4842,
prevFCN = 2171.25988 a=2.011,
prevFCN = 2171.25988 a=2.013, sigma=0.4848,
prevFCN = 2171.259901 sigma=0.4836,
prevFCN = 2171.259901 sigma=0.4843,
prevFCN = 2171.259881 sigma=0.4841,
prevFCN = 2171.259881 a=2.134, sigma=0.487,
prevFCN = 2171.720107 a=2.013, sigma=0.4842, [#1] INFO:Minimization -- RooAbsMinimizerFcn::setOptimizeConst: deactivating const optimization
[#0] WARNING:Eval -- The FFT convolution 'model' will run with 50 bins. A decent accuracy for difficult convolutions is typically only reached with n >= 1000. Suggest to increase the number of bins of the observable 'mean'.
[#1] INFO:NumericIntegration -- RooRealIntegral::init(gx_Int[mean,x]) using numeric integrator RooIntegrator1D to calculate Int(mean)
[#1] INFO:NumericIntegration -- RooRealIntegral::init(model_mean_Int[mean]) using numeric integrator RooIntegrator1D to calculate Int(mean)
[#1] INFO:Caching -- RooAbsCachedPdf::getCache(model) creating new cache 0x556979fdbb60 with pdf gx_CONV_model_mean_CACHE_Obs[x,mean]_NORM_x_mean for nset (x,mean) with code 1
[#0] WARNING:Eval -- The FFT convolution 'model' will run with 50 bins. A decent accuracy for difficult convolutions is typically only reached with n >= 1000. Suggest to increase the number of bins of the observable 'mean'.
[#1] INFO:Caching -- RooAbsCachedPdf::getCache(model) creating new cache 0x556979fdbb60 with pdf gx_CONV_model_mean_CACHE_Obs[x,mean]_NORM_x for nset (x) with code 1 from preexisting content.