Logo ROOT  
Reference Guide
 
Loading...
Searching...
No Matches
rf506_msgservice.py File Reference

Namespaces

namespace  rf506_msgservice
 

Detailed Description

View in nbviewer Open in SWAN
Organization and simultaneous fits: tuning and customizing the ROOT.RooFit message logging facility

import ROOT
# Create pdf
# --------------------
# Construct gauss(x,m,s)
x = ROOT.RooRealVar("x", "x", -10, 10)
m = ROOT.RooRealVar("m", "m", 0, -10, 10)
s = ROOT.RooRealVar("s", "s", 1, -10, 10)
gauss = ROOT.RooGaussian("g", "g", x, m, s)
# Construct poly(x,p0)
p0 = ROOT.RooRealVar("p0", "p0", 0.01, 0.0, 1.0)
poly = ROOT.RooPolynomial("p", "p", x, [p0])
# model = f*gauss(x) + (1-f)*poly(x)
f = ROOT.RooRealVar("f", "f", 0.5, 0.0, 1.0)
model = ROOT.RooAddPdf("model", "model", [gauss, poly], [f])
data = model.generate({x}, 10)
# Print configuration of message service
# ------------------------------------------
# Print streams configuration
ROOT.RooMsgService.instance().Print()
# Adding integration topic to existing INFO stream
# ---------------------------------------------------
# Print streams configuration
ROOT.RooMsgService.instance().Print()
# Add Integration topic to existing INFO stream
ROOT.RooMsgService.instance().getStream(1).addTopic(ROOT.RooFit.Integration)
# Construct integral over gauss to demonstrate message stream
igauss = gauss.createIntegral({x})
igauss.Print()
# Print streams configuration in verbose, also shows inactive streams
ROOT.RooMsgService.instance().Print()
# Remove stream
ROOT.RooMsgService.instance().getStream(1).removeTopic(ROOT.RooFit.Integration)
# Examples of pdf value tracing
# -----------------------------------------------------------------------
# Show DEBUG level message on function tracing, ROOT.RooGaussian only
ROOT.RooMsgService.instance().addStream(ROOT.RooFit.DEBUG, Topic=ROOT.RooFit.Tracing, ClassName="RooGaussian")
# Perform a fit to generate some tracing messages
model.fitTo(data, Verbose=True)
# Reset message service to default stream configuration
ROOT.RooMsgService.instance().reset()
# Show DEBUG level message on function tracing on all objects, output to
# file
ROOT.RooMsgService.instance().addStream(ROOT.RooFit.DEBUG, Topic=ROOT.RooFit.Tracing, OutputFile="rf506_debug.log")
# Perform a fit to generate some tracing messages
model.fitTo(data, Verbose=True)
# Reset message service to default stream configuration
ROOT.RooMsgService.instance().reset()
# Example of another debugging stream
# ---------------------------------------------------------------------
# Show DEBUG level messages on client/server link state management
ROOT.RooMsgService.instance().addStream(ROOT.RooFit.DEBUG, Topic=ROOT.RooFit.LinkStateMgmt)
ROOT.RooMsgService.instance().Print("v")
# Clone composite pdf g to trigger some link state management activity
gprime = gauss.cloneTree()
gprime.Print()
# Reset message service to default stream configuration
ROOT.RooMsgService.instance().reset()
[#0] WARNING:InputArguments -- The parameter 's' with range [-10, 10] of the RooGaussian 'g' exceeds the safe range of (0, inf). Advise to limit its range.
Active Message streams
[0] MinLevel = PROGRESS Topic = Generation Minimization Plotting Fitting Integration LinkStateMgmt Eval Caching Optimization ObjectHandling InputArguments Tracing Contents DataHandling NumericIntegration FastEvaluations
[1] MinLevel = INFO Topic = Minimization Plotting Fitting Eval Caching ObjectHandling InputArguments DataHandling NumericIntegration
[2] MinLevel = INFO Topic = HistFactory
Active Message streams
[0] MinLevel = PROGRESS Topic = Generation Minimization Plotting Fitting Integration LinkStateMgmt Eval Caching Optimization ObjectHandling InputArguments Tracing Contents DataHandling NumericIntegration FastEvaluations
[1] MinLevel = INFO Topic = Minimization Plotting Fitting Eval Caching ObjectHandling InputArguments DataHandling NumericIntegration
[2] MinLevel = INFO Topic = HistFactory
[#1] INFO:Integration -- RooRealIntegral::ctor(g_Int[x]) Constructing integral of function g over observables(x) with normalization () with range identifier <none>
[#1] INFO:Integration -- g: Observable x is suitable for analytical integration (if supported by p.d.f)
[#1] INFO:Integration -- g: Function integrated observables (x) internally with code 1
[#1] INFO:Integration -- g: Observables (x) are analytically integrated with code 1
RooRealIntegral::g_Int[x][ Int gd[Ana](x) ] = 2.50663
Active Message streams
[0] MinLevel = PROGRESS Topic = Generation Minimization Plotting Fitting Integration LinkStateMgmt Eval Caching Optimization ObjectHandling InputArguments Tracing Contents DataHandling NumericIntegration FastEvaluations
[1] MinLevel = INFO Topic = Minimization Plotting Fitting Integration Eval Caching ObjectHandling InputArguments DataHandling NumericIntegration
[2] MinLevel = INFO Topic = HistFactory
[#1] INFO:Minimization -- RooAbsMinimizerFcn::setOptimizeConst: activating const optimization
[#1] INFO:Minimization -- The following expressions will be evaluated in cache-and-track mode: (g,p)
[#0] WARNING:Minimization -- RooAbsMinimizerFcn::synchronize: WARNING: no initial error estimate available for f: using 0.1
[#0] WARNING:Minimization -- RooAbsMinimizerFcn::synchronize: WARNING: no initial error estimate available for m: using 2
[#0] WARNING:Minimization -- RooAbsMinimizerFcn::synchronize: WARNING: no initial error estimate available for p0: using 0.005
[#0] WARNING:Minimization -- RooAbsMinimizerFcn::synchronize: WARNING: no initial error estimate available for s: using 2
**********
** 1 **SET PRINT 1
**********
**********
** 2 **SET NOGRAD
**********
PARAMETER DEFINITIONS:
NO. NAME VALUE STEP SIZE LIMITS
1 f 5.00000e-01 1.00000e-01 0.00000e+00 1.00000e+00
2 m 0.00000e+00 2.00000e+00 -1.00000e+01 1.00000e+01
3 p0 1.00000e-02 5.00000e-03 0.00000e+00 1.00000e+00
4 s 1.00000e+00 2.00000e+00 -1.00000e+01 1.00000e+01
**********
** 3 **SET ERR 0.5
**********
**********
** 4 **SET PRINT 1
**********
**********
** 5 **SET STR 1
**********
NOW USING STRATEGY 1: TRY TO BALANCE SPEED AGAINST RELIABILITY
**********
** 6 **MIGRAD 2000 1
**********
FIRST CALL TO USER FUNCTION AT NEW START POINT, WITH IFLAG=4.
prevFCN = 31.75882326 START MIGRAD MINIMIZATION. STRATEGY 1. CONVERGENCE WHEN EDM .LT. 1.00e-03
f=0.501, p0=0.01,
prevFCN = 31.76758673 f=0.499,
prevFCN = 31.75008506 f=0.5, m=0.02014,
prevFCN = 31.72980141 m=-0.02014,
prevFCN = 31.78749743 m=0.004235,
prevFCN = 31.75274724 m=-0.004235,
prevFCN = 31.76488389 m=0, p0=0.01005,
prevFCN = 31.75954549 p0=0.009948,
prevFCN = 31.75810351 p0=0.01013,
prevFCN = 31.76062402 p0=0.009872,
prevFCN = 31.75703788 p0=0.01, s=1.02,
prevFCN = 31.67915486 s=0.9799,
prevFCN = 31.84068856 s=1.002,
prevFCN = 31.75075447 s=0.998,
prevFCN = 31.76691405 m=0.004235, s=1,
prevFCN = 31.75274724 m=0.02118,
prevFCN = 31.72829189 m=0.06353,
prevFCN = 31.66614321 m=0.1906,
prevFCN = 31.47244052 m=0.5715,
prevFCN = 30.87227362 m=1.707,
prevFCN = 29.88047134 m=2.064,
prevFCN = 29.97604268 f=0.5008, m=1.707,
prevFCN = 29.88564172 f=0.4992,
prevFCN = 29.87531802 f=0.5, m=1.711,
prevFCN = 29.8803659 m=1.703,
prevFCN = 29.88060433 m=1.71,
prevFCN = 29.88039214 m=1.704,
prevFCN = 29.88056503 m=1.707, p0=0.01013,
prevFCN = 29.88274199 p0=0.009875,
prevFCN = 29.87821833 p0=0.01, s=1.002,
prevFCN = 29.87987611 s=0.9984,
prevFCN = 29.88107011 s=1.003,
prevFCN = 29.87926952 s=0.9967,
prevFCN = 29.88168765 FCN=29.8805 FROM MIGRAD STATUS=INITIATE 33 CALLS 34 TOTAL
EDM= unknown STRATEGY= 1 NO ERROR MATRIX
EXT PARAMETER CURRENT GUESS STEP FIRST
NO. NAME VALUE ERROR SIZE DERIVATIVE
1 f 5.00000e-01 1.00000e-01 0.00000e+00 3.38641e+00
2 m 1.70692e+00 2.00000e+00 1.71532e-01 -2.90086e-01
3 p0 1.00000e-02 5.00000e-03 0.00000e+00 1.80182e+00
4 s 1.00000e+00 2.00000e+00 0.00000e+00 -3.63523e+00
ERR DEF= 0.5
f=0.2774, m=1.724, p0=0.000388, s=1.276,
prevFCN = 28.97288883 f=0.2912, m=1.723, p0=0.0006269, s=1.257,
prevFCN = 28.97893369 f=0.278, m=1.724, p0=0.000388, s=1.276,
prevFCN = 28.97325909 f=0.2768,
prevFCN = 28.97252778 f=0.2774, m=1.727,
prevFCN = 28.97321652 m=1.722,
prevFCN = 28.97256819 m=1.724, p0=0.0004103,
prevFCN = 28.97321664 p0=0.0003662,
prevFCN = 28.97257031 p0=0.000388, s=1.279,
prevFCN = 28.97432524 s=1.273,
prevFCN = 28.97145596 s=1.282,
prevFCN = 28.97575564 s=1.269,
prevFCN = 28.97003607 f=0.2452, m=1.663, p0=5.498e-07, s=0.9876,
prevFCN = 28.86089971 f=0.2274, m=1.628, p0=0.0001029, s=0.8218,
prevFCN = 28.87647974 f=0.241, m=1.655, p0=3.204e-06, s=0.9491,
prevFCN = 28.85685477 f=0.2418,
prevFCN = 28.85692699 f=0.2403,
prevFCN = 28.85679737 f=0.241, m=1.659,
prevFCN = 28.85436009 m=1.651,
prevFCN = 28.8593705 m=1.655, p0=1.215e-06,
prevFCN = 28.85682558 p0=6.138e-06,
prevFCN = 28.85689784 p0=3.204e-06, s=0.9556,
prevFCN = 28.85804685 s=0.9426,
prevFCN = 28.85571545 s=0.9524,
prevFCN = 28.85746237 s=0.9458,
prevFCN = 28.85626117 f=0.2171, m=1.753, p0=0.0002379, s=0.6877,
prevFCN = 28.6750677 f=0.1311, m=2.143, p0=0.004887, s=-0.3611, RooAbsMinimizerFcn: Minimized function has error status.
Returning maximum FCN so far (31.8407) to force MIGRAD to back out of this region. Error log follows.
Parameter values: f=0.131146 m=2.14309 p0=0.00488743 s=-0.361096
RooAddPdf::model[ f * g + [%] * p ]
getLogVal() top-level p.d.f evaluates to NaN @ !refCoefNorm=(), !pdfs=(g = nan/-0.905133,p = 0.0490189/20), !coefficients=(f = 0.131146)
getLogVal() top-level p.d.f evaluates to NaN @ !refCoefNorm=(), !pdfs=(g = nan/-0.905133,p = 0.0519177/20), !coefficients=(f = 0.131146)
getLogVal() top-level p.d.f evaluates to NaN @ !refCoefNorm=(), !pdfs=(g = nan/-0.905133,p = 0.0505977/20), !coefficients=(f = 0.131146)
getLogVal() top-level p.d.f evaluates to NaN @ !refCoefNorm=(), !pdfs=(g = nan/-0.905133,p = 0.0505745/20), !coefficients=(f = 0.131146)
getLogVal() top-level p.d.f evaluates to NaN @ !refCoefNorm=(), !pdfs=(g = nan/-0.905133,p = 0.0499767/20), !coefficients=(f = 0.131146)
getLogVal() top-level p.d.f evaluates to NaN @ !refCoefNorm=(), !pdfs=(g = nan/-0.905133,p = 0.0488321/20), !coefficients=(f = 0.131146)
getLogVal() top-level p.d.f evaluates to NaN @ !refCoefNorm=(), !pdfs=(g = nan/-0.905133,p = 0.0477145/20), !coefficients=(f = 0.131146)
getLogVal() top-level p.d.f evaluates to NaN @ !refCoefNorm=(), !pdfs=(g = nan/-0.905133,p = 0.0496942/20), !coefficients=(f = 0.131146)
getLogVal() top-level p.d.f evaluates to NaN @ !refCoefNorm=(), !pdfs=(g = nan/-0.905133,p = 0.048713/20), !coefficients=(f = 0.131146)
getLogVal() top-level p.d.f evaluates to NaN @ !refCoefNorm=(), !pdfs=(g = nan/-0.905133,p = 0.0504769/20), !coefficients=(f = 0.131146)
RooNLLVar::nll_model_modelData[ parameters=(f,m,p0,s) ]
function value is NAN @ parameters=(f = 0.131146,m = 2.14309,p0 = 0.00488743,s = -0.361096)
RooGaussian::g[ x=x mean=m sigma=s ]
p.d.f normalization integral is zero or negative: -0.905133 @ x=x=-4.01476, mean=m=2.14309, sigma=s=-0.361096
p.d.f normalization integral is zero or negative: -0.905133 @ x=x=7.84746, mean=m=2.14309, sigma=s=-0.361096
p.d.f normalization integral is zero or negative: -0.905133 @ x=x=2.44579, mean=m=2.14309, sigma=s=-0.361096
p.d.f normalization integral is zero or negative: -0.905133 @ x=x=2.35102, mean=m=2.14309, sigma=s=-0.361096
p.d.f normalization integral is zero or negative: -0.905133 @ x=x=-0.0953319, mean=m=2.14309, sigma=s=-0.361096
p.d.f normalization integral is zero or negative: -0.905133 @ x=x=-4.77917, mean=m=2.14309, sigma=s=-0.361096
p.d.f normalization integral is zero or negative: -0.905133 @ x=x=-9.35254, mean=m=2.14309, sigma=s=-0.361096
p.d.f normalization integral is zero or negative: -0.905133 @ x=x=-1.25126, mean=m=2.14309, sigma=s=-0.361096
p.d.f normalization integral is zero or negative: -0.905133 @ x=x=-5.2665, mean=m=2.14309, sigma=s=-0.361096
p.d.f normalization integral is zero or negative: -0.905133 @ x=x=1.9514, mean=m=2.14309, sigma=s=-0.361096
prevFCN = 122.3539561 f=0.2285, m=1.706, p0=7.868e-05, s=0.8134,
prevFCN = 28.78647388 f=0.1125, m=2.24, p0=0.006973, s=-0.6231, RooAbsMinimizerFcn: Minimized function has error status.
Returning maximum FCN so far (31.8407) to force MIGRAD to back out of this region. Error log follows.
Parameter values: f=0.112499 m=2.24008 p0=0.00697314 s=-0.623113
RooAddPdf::model[ f * g + [%] * p ]
getLogVal() top-level p.d.f evaluates to NaN @ !refCoefNorm=(), !pdfs=(g = nan/-1.56191,p = 0.0486002/20), !coefficients=(f = 0.112499)
getLogVal() top-level p.d.f evaluates to NaN @ !refCoefNorm=(), !pdfs=(g = nan/-1.56191,p = 0.0527361/20), !coefficients=(f = 0.112499)
getLogVal() top-level p.d.f evaluates to NaN @ !refCoefNorm=(), !pdfs=(g = nan/-1.56191,p = 0.0508527/20), !coefficients=(f = 0.112499)
getLogVal() top-level p.d.f evaluates to NaN @ !refCoefNorm=(), !pdfs=(g = nan/-1.56191,p = 0.0508197/20), !coefficients=(f = 0.112499)
getLogVal() top-level p.d.f evaluates to NaN @ !refCoefNorm=(), !pdfs=(g = nan/-1.56191,p = 0.0499668/20), !coefficients=(f = 0.112499)
getLogVal() top-level p.d.f evaluates to NaN @ !refCoefNorm=(), !pdfs=(g = nan/-1.56191,p = 0.0483337/20), !coefficients=(f = 0.112499)
getLogVal() top-level p.d.f evaluates to NaN @ !refCoefNorm=(), !pdfs=(g = nan/-1.56191,p = 0.0467392/20), !coefficients=(f = 0.112499)
getLogVal() top-level p.d.f evaluates to NaN @ !refCoefNorm=(), !pdfs=(g = nan/-1.56191,p = 0.0495637/20), !coefficients=(f = 0.112499)
getLogVal() top-level p.d.f evaluates to NaN @ !refCoefNorm=(), !pdfs=(g = nan/-1.56191,p = 0.0481638/20), !coefficients=(f = 0.112499)
getLogVal() top-level p.d.f evaluates to NaN @ !refCoefNorm=(), !pdfs=(g = nan/-1.56191,p = 0.0506804/20), !coefficients=(f = 0.112499)
RooNLLVar::nll_model_modelData[ parameters=(f,m,p0,s) ]
function value is NAN @ parameters=(f = 0.112499,m = 2.24008,p0 = 0.00697314,s = -0.623113)
RooGaussian::g[ x=x mean=m sigma=s ]
p.d.f normalization integral is zero or negative: -1.561912 @ x=x=-4.01476, mean=m=2.24008, sigma=s=-0.623113
p.d.f normalization integral is zero or negative: -1.561912 @ x=x=7.84746, mean=m=2.24008, sigma=s=-0.623113
p.d.f normalization integral is zero or negative: -1.561912 @ x=x=2.44579, mean=m=2.24008, sigma=s=-0.623113
p.d.f normalization integral is zero or negative: -1.561912 @ x=x=2.35102, mean=m=2.24008, sigma=s=-0.623113
p.d.f normalization integral is zero or negative: -1.561912 @ x=x=-0.0953319, mean=m=2.24008, sigma=s=-0.623113
p.d.f normalization integral is zero or negative: -1.561912 @ x=x=-4.77917, mean=m=2.24008, sigma=s=-0.623113
p.d.f normalization integral is zero or negative: -1.561912 @ x=x=-9.35254, mean=m=2.24008, sigma=s=-0.623113
p.d.f normalization integral is zero or negative: -1.561912 @ x=x=-1.25126, mean=m=2.24008, sigma=s=-0.623113
p.d.f normalization integral is zero or negative: -1.561912 @ x=x=-5.2665, mean=m=2.24008, sigma=s=-0.623113
p.d.f normalization integral is zero or negative: -1.561912 @ x=x=1.9514, mean=m=2.24008, sigma=s=-0.623113
prevFCN = 188.0319041 f=0.1613, m=1.997, p0=0.00245, s=0.03234,
prevFCN = 28.83468394 f=0.1957, m=1.844, p0=0.0007883, s=0.4446,
prevFCN = 28.29265339 f=0.1624, m=1.992, p0=0.002383, s=0.04546,
prevFCN = 28.59402569 f=0.1875, m=1.879, p0=0.001091, s=0.3493,
prevFCN = 28.21262283 f=0.1848, m=1.891, p0=0.001205, s=0.317,
prevFCN = 28.22913773 f=0.1881, m=1.879, p0=0.001091, s=0.3493,
prevFCN = 28.21167987 f=0.1869,
prevFCN = 28.21358338 f=0.1875, m=1.883,
prevFCN = 28.193551 m=1.876,
prevFCN = 28.23178915 m=1.881,
prevFCN = 28.2053519 m=1.878,
prevFCN = 28.21990745 m=1.879, p0=0.001046,
prevFCN = 28.21195074 p0=0.001136,
prevFCN = 28.21330938 p0=0.001091, s=0.3526,
prevFCN = 28.20611524 s=0.346,
prevFCN = 28.21961933 s=0.3499,
prevFCN = 28.2115002 s=0.3488,
prevFCN = 28.21375915 f=0.1722, m=1.965, p0=0.001851, s=0.1732,
prevFCN = 28.7434305 f=0.1862, m=1.887, p0=0.001148, s=0.3343,
prevFCN = 28.20584234 f=0.1867,
prevFCN = 28.20499847 f=0.1856,
prevFCN = 28.20669988 f=0.1862, m=1.888,
prevFCN = 28.19816797 m=1.885,
prevFCN = 28.21353051 m=1.887, p0=0.001103,
prevFCN = 28.20517217 p0=0.001193,
prevFCN = 28.20652621 p0=0.001148, s=0.3349,
prevFCN = 28.20444403 s=0.3338,
prevFCN = 28.20725615 f=0.1818, m=1.915, p0=0.001339, s=0.308,
prevFCN = 28.10982159 f=0.1645, m=2.028, p0=0.002253, s=0.2025,
prevFCN = 27.87419438 f=0.1563, m=2.083, p0=0.00279, s=0.1506,
prevFCN = 28.12016835 f=0.1689, m=1.998, p0=0.001992, s=0.23,
prevFCN = 27.88982196 f=0.165, m=2.028, p0=0.002253, s=0.2025,
prevFCN = 27.87267018 f=0.164,
prevFCN = 27.87573266 f=0.1645, m=2.029,
prevFCN = 27.86358098 m=2.027,
prevFCN = 27.88482321 m=2.028, p0=0.002191,
prevFCN = 27.87325244 p0=0.002317,
prevFCN = 27.87515036 p0=0.002253, s=0.203,
prevFCN = 27.86943774 s=0.202,
prevFCN = 27.8789932 s=0.2028,
prevFCN = 27.87149504 s=0.2022,
prevFCN = 27.87690726 f=0.1678, m=2.025, p0=0.002114, s=0.2145,
prevFCN = 27.78334859 f=0.1813, m=2.015, p0=0.001599, s=0.2624,
prevFCN = 27.57262788 f=0.1863, m=2.011, p0=0.00143, s=0.2798,
prevFCN = 27.54143343 f=0.1904, m=2.008, p0=0.001303, s=0.2937,
prevFCN = 27.52888695 f=0.193, m=2.006, p0=0.001222, s=0.3027,
prevFCN = 27.52564081 f=0.1936,
prevFCN = 27.52428232 f=0.1925,
prevFCN = 27.52701397 f=0.193, m=2.008,
prevFCN = 27.51916389 m=2.005,
prevFCN = 27.53214121 m=2.007,
prevFCN = 27.52075178 m=2.006,
prevFCN = 27.5305432 m=2.006, p0=0.001178,
prevFCN = 27.52494514 p0=0.001268,
prevFCN = 27.52634985 p0=0.001222, s=0.303,
prevFCN = 27.52549414 s=0.3024,
prevFCN = 27.52579186 s=0.3032,
prevFCN = 27.52538731 s=0.3022,
prevFCN = 27.52590768 f=0.1972, m=2.021, p0=0.001181, s=0.2996,
prevFCN = 27.43543975 f=0.2143, m=2.078, p0=0.001023, s=0.2869,
prevFCN = 27.09091162 f=0.2593, m=2.222, p0=0.0006772, s=0.2553,
prevFCN = 26.49313792 f=0.3114, m=2.377, p0=0.0003818, s=0.2209,
prevFCN = 26.77270369 f=0.2701, m=2.254, p0=0.0006078, s=0.248,
prevFCN = 26.44774367 f=0.2707,
prevFCN = 26.44785928 f=0.2695,
prevFCN = 26.44764262 f=0.2701, m=2.255,
prevFCN = 26.44771606 m=2.254,
prevFCN = 26.44779912 m=2.255,
prevFCN = 26.44772189 m=2.254,
prevFCN = 26.4477783 m=2.254, p0=0.000577,
prevFCN = 26.44724245 p0=0.0006393,
prevFCN = 26.4482581 p0=0.0006078, s=0.2485,
prevFCN = 26.44920896 s=0.2475,
prevFCN = 26.44629083 f=0.259, m=2.32, p0=9.987e-05, s=0.1948,
prevFCN = 26.48265893 f=0.2655, m=2.282, p0=0.0003445, s=0.2259,
prevFCN = 26.40622954 f=0.266,
prevFCN = 26.40626101 f=0.2649,
prevFCN = 26.40621084 f=0.2655, m=2.282,
prevFCN = 26.40686301 m=2.281,
prevFCN = 26.40561063 m=2.282, p0=0.0003218,
prevFCN = 26.40586112 p0=0.000368,
prevFCN = 26.40661063 p0=0.0003445, s=0.2264,
prevFCN = 26.4070037 s=0.2254,
prevFCN = 26.40547561 f=0.2619, m=2.269, p0=1.164e-05, s=0.2128,
prevFCN = 26.37813788 f=0.2603, m=2.263, p0=9.758e-06, s=0.2071,
prevFCN = 26.37648547 f=0.2607, m=2.265, p0=2.459e-06, s=0.2084,
prevFCN = 26.37624118 f=0.2613,
prevFCN = 26.3761512 f=0.2602,
prevFCN = 26.37634401 f=0.2607, m=2.265,
prevFCN = 26.37638659 m=2.264,
prevFCN = 26.37611051 m=2.265, p0=4.814e-06,
prevFCN = 26.37627918 p0=8.88e-07,
prevFCN = 26.37621583 p0=2.459e-06, s=0.2089,
prevFCN = 26.37618008 s=0.208,
prevFCN = 26.37632149 f=0.266, m=2.258, p0=2.905e-06, s=0.2111,
prevFCN = 26.37502847 f=0.2652, m=2.259, p0=2.835e-06, s=0.2107,
prevFCN = 26.37498935 f=0.2657,
prevFCN = 26.37499434 f=0.2646,
prevFCN = 26.37499719 f=0.2652, m=2.26,
prevFCN = 26.37500579 m=2.259,
prevFCN = 26.37498568 m=2.259, p0=5.355e-06,
prevFCN = 26.37503005 p0=1.11e-06,
prevFCN = 26.37496148 p0=2.835e-06, s=0.211,
prevFCN = 26.37501113 s=0.2104,
prevFCN = 26.37497995 MIGRAD MINIMIZATION HAS CONVERGED.
FCN=26.375 FROM MIGRAD STATUS=CONVERGED 166 CALLS 167 TOTAL
EDM=5.2123e-05 STRATEGY= 1 ERROR MATRIX UNCERTAINTY 4.2 per cent
EXT PARAMETER STEP FIRST
NO. NAME VALUE ERROR SIZE DERIVATIVE
1 f 2.65182e-01 1.69358e-01 1.01521e-02 -1.15686e-03
2 m 2.25938e+00 1.48943e-01 -5.27364e-04 1.95576e-01
3 p0 2.83539e-06 2.52439e-02 2.31288e-04 2.72050e-02
4 s 2.10717e-01 1.00428e-01 2.26902e-04 4.71766e-01
ERR DEF= 0.5
EXTERNAL ERROR MATRIX. NDIM= 25 NPAR= 4 ERR DEF=0.5
3.021e-02 2.135e-03 9.360e-06 -1.319e-03
2.135e-03 2.219e-02 -1.105e-06 -1.134e-03
9.360e-06 -1.105e-06 2.887e-07 -8.247e-06
-1.319e-03 -1.134e-03 -8.247e-06 1.009e-02
PARAMETER CORRELATION COEFFICIENTS
NO. GLOBAL 1 2 3 4
1 0.14158 1.000 0.082 0.100 -0.076
2 0.11285 0.082 1.000 -0.014 -0.076
3 0.17975 0.100 -0.014 1.000 -0.153
4 0.17988 -0.076 -0.076 -0.153 1.000
s=0.2107, **********
** 7 **SET ERR 0.5
**********
**********
** 8 **SET PRINT 1
**********
**********
** 9 **HESSE 2000
**********
prevFCN = 26.37498935 f=0.2657,
prevFCN = 26.37499434 f=0.2646,
prevFCN = 26.37499719 f=0.2652, m=2.26,
prevFCN = 26.37500579 m=2.259,
prevFCN = 26.37498568 m=2.259, p0=5.355e-06,
prevFCN = 26.37503005 p0=1.11e-06,
prevFCN = 26.37496148 p0=2.835e-06, s=0.211,
prevFCN = 26.37501113 s=0.2104,
prevFCN = 26.37497995 f=0.2653, s=0.2107,
prevFCN = 26.37498932 f=0.2651,
prevFCN = 26.37498989 f=0.2652, m=2.259,
prevFCN = 26.37499161 m=2.259,
prevFCN = 26.37498759 m=2.259, p0=3.276e-06,
prevFCN = 26.37499646 p0=2.427e-06,
prevFCN = 26.37498275 p0=2.835e-06, s=0.2108,
prevFCN = 26.37499272 s=0.2107,
prevFCN = 26.37498647 f=0.2657, m=2.26, s=0.2107,
prevFCN = 26.37501147 m=2.259, p0=5.355e-06,
prevFCN = 26.37503504 f=0.2652, m=2.26,
prevFCN = 26.37504649 f=0.2657, m=2.259, p0=2.835e-06, s=0.211,
prevFCN = 26.37501574 f=0.2652, m=2.26,
prevFCN = 26.37502857 m=2.259, p0=5.355e-06,
prevFCN = 26.37505184 COVARIANCE MATRIX CALCULATED SUCCESSFULLY
FCN=26.375 FROM HESSE STATUS=OK 23 CALLS 190 TOTAL
EDM=0.000117538 STRATEGY= 1 ERROR MATRIX ACCURATE
EXT PARAMETER INTERNAL INTERNAL
NO. NAME VALUE ERROR STEP SIZE VALUE
1 f 2.65182e-01 1.49160e-01 1.23217e-03 -4.88878e-01
2 m 2.25938e+00 1.40794e-01 5.14100e-05 2.27906e-01
3 p0 2.83539e-06 3.06275e-02 1.26031e-03 -1.56743e+00
4 s 2.10717e-01 9.42272e-02 3.30485e-05 2.10732e-02
ERR DEF= 0.5
EXTERNAL ERROR MATRIX. NDIM= 25 NPAR= 4 ERR DEF=0.5
2.315e-02 -1.213e-03 -3.313e-08 5.042e-04
-1.213e-03 1.982e-02 8.012e-09 -1.075e-03
-3.313e-08 8.012e-09 3.510e-07 -3.512e-09
5.042e-04 -1.075e-03 -3.512e-09 8.879e-03
PARAMETER CORRELATION COEFFICIENTS
NO. GLOBAL 1 2 3 4
1 0.06441 1.000 -0.057 -0.000 0.035
2 0.09725 -0.057 1.000 0.000 -0.081
3 0.00038 -0.000 0.000 1.000 -0.000
4 0.08659 0.035 -0.081 -0.000 1.000
p0=2.835e-06, s=0.2107, [#1] INFO:Minimization -- RooAbsMinimizerFcn::setOptimizeConst: deactivating const optimization
[#1] INFO:Minimization -- RooAbsMinimizerFcn::setOptimizeConst: activating const optimization
[#1] INFO:Minimization -- The following expressions will be evaluated in cache-and-track mode: (g,p)
**********
** 10 **SET PRINT 1
**********
**********
** 11 **SET NOGRAD
**********
PARAMETER DEFINITIONS:
NO. NAME VALUE STEP SIZE LIMITS
1 f 2.65182e-01 1.49160e-01 0.00000e+00 1.00000e+00
2 m 2.25938e+00 1.40794e-01 -1.00000e+01 1.00000e+01
3 p0 2.83539e-06 3.06275e-02 0.00000e+00 1.00000e+00
MINUIT WARNING IN PARAMETR
============== VARIABLE3 BROUGHT BACK INSIDE LIMITS.
4 s 2.10717e-01 9.42272e-02 -1.00000e+01 1.00000e+01
**********
** 12 **SET ERR 0.5
**********
**********
** 13 **SET PRINT 1
**********
**********
** 14 **SET STR 1
**********
NOW USING STRATEGY 1: TRY TO BALANCE SPEED AGAINST RELIABILITY
**********
** 15 **MIGRAD 2000 1
**********
FIRST CALL TO USER FUNCTION AT NEW START POINT, WITH IFLAG=4.
prevFCN = 26.37498935 START MIGRAD MINIMIZATION. STRATEGY 1. CONVERGENCE WHEN EDM .LT. 1.00e-03
f=0.2667,
prevFCN = 26.37503756 f=0.2636,
prevFCN = 26.3750457 f=0.2657,
prevFCN = 26.37499433 f=0.2646,
prevFCN = 26.37499718 f=0.2652, m=2.261,
prevFCN = 26.37506807 m=2.258,
prevFCN = 26.37501158 m=2.26,
prevFCN = 26.37500583 m=2.259,
prevFCN = 26.37498568 m=2.259, p0=6.546e-06,
prevFCN = 26.3750493 p0=6.547e-07,
prevFCN = 26.37495412 p0=5.353e-06,
prevFCN = 26.37503002 p0=1.111e-06,
prevFCN = 26.37496149 p0=2.835e-06, s=0.2117,
prevFCN = 26.37508388 s=0.2098,
prevFCN = 26.37499557 s=0.2111,
prevFCN = 26.37501161 s=0.2104,
prevFCN = 26.3749799 FCN=26.375 FROM MIGRAD STATUS=INITIATE 16 CALLS 17 TOTAL
EDM= unknown STRATEGY= 1 NO ERROR MATRIX
EXT PARAMETER CURRENT GUESS STEP FIRST
NO. NAME VALUE ERROR SIZE DERIVATIVE
1 f 2.65182e-01 1.49160e-01 3.51738e-01 -1.15686e-03
2 m 2.25938e+00 1.40794e-01 1.44537e-02 1.95575e-01
3 p0 2.83539e-06 3.06275e-02 1.74945e-01 2.72050e-02
4 s 2.10717e-01 9.42272e-02 9.42495e-03 4.71750e-01
ERR DEF= 0.5
f=0.2652, m=2.259, p0=1.388e-14, s=0.2103,
prevFCN = 26.37493073 f=0.2658,
prevFCN = 26.37493708 f=0.2647,
prevFCN = 26.37493718 f=0.2652, m=2.259,
prevFCN = 26.37493591 m=2.258,
prevFCN = 26.3749384 m=2.259, p0=3.967e-07,
prevFCN = 26.37493713 p0=3.964e-07,
prevFCN = 26.37493713 p0=1.388e-14, s=0.2106,
prevFCN = 26.37493624 s=0.21,
prevFCN = 26.37493816 MIGRAD MINIMIZATION HAS CONVERGED.
MIGRAD WILL VERIFY CONVERGENCE AND ERROR MATRIX.
s=0.2103,
prevFCN = 26.37493073 f=0.2658,
prevFCN = 26.37493708 f=0.2647,
prevFCN = 26.37493718 f=0.2652, m=2.259,
prevFCN = 26.37493591 m=2.258,
prevFCN = 26.3749384 m=2.259, p0=3.967e-07,
prevFCN = 26.37493713 p0=3.964e-07,
prevFCN = 26.37493713 p0=1.388e-14, s=0.2106,
prevFCN = 26.37493624 s=0.21,
prevFCN = 26.37493816 f=0.2654, s=0.2103,
prevFCN = 26.37493097 f=0.2651,
prevFCN = 26.37493099 f=0.2652, m=2.259,
prevFCN = 26.37493073 m=2.259,
prevFCN = 26.37493123 m=2.259, p0=1.589e-08,
prevFCN = 26.37493098 p0=1.583e-08,
prevFCN = 26.37493098 p0=1.388e-14, s=0.2104,
prevFCN = 26.3749308 s=0.2102,
prevFCN = 26.37493117 f=0.2658, m=2.259, s=0.2103,
prevFCN = 26.37494295 m=2.259, p0=3.967e-07,
prevFCN = 26.37494349 f=0.2652, m=2.259,
prevFCN = 26.37494232 f=0.2658, m=2.259, p0=1.388e-14, s=0.2106,
prevFCN = 26.3749422 f=0.2652, m=2.259,
prevFCN = 26.37494248 m=2.259, p0=3.967e-07,
prevFCN = 26.37494265 COVARIANCE MATRIX CALCULATED SUCCESSFULLY
FCN=26.3749 FROM MIGRAD STATUS=CONVERGED 48 CALLS 49 TOTAL
EDM=1.75981e-07 STRATEGY= 1 ERROR MATRIX ACCURATE
EXT PARAMETER STEP FIRST
NO. NAME VALUE ERROR SIZE DERIVATIVE
1 f 2.65243e-01 1.49171e-01 1.23134e-03 -4.01360e-05
2 m 2.25899e+00 1.40574e-01 5.14960e-05 -2.42389e-02
3 p0 1.38778e-14 3.06306e-02 1.25947e-03** at limit **
4 s 2.10301e-01 9.37700e-02 3.36127e-05 -2.80291e-02
ERR DEF= 0.5
EXTERNAL ERROR MATRIX. NDIM= 25 NPAR= 4 ERR DEF=0.5
2.315e-02 -1.209e-03 -3.656e-13 5.077e-04
-1.209e-03 1.976e-02 8.789e-14 -1.103e-03
-3.656e-13 8.789e-14 1.721e-15 -3.915e-14
5.077e-04 -1.103e-03 -3.915e-14 8.793e-03
PARAMETER CORRELATION COEFFICIENTS
NO. GLOBAL 1 2 3 4
1 0.06443 1.000 -0.056 -0.000 0.036
2 0.09933 -0.056 1.000 0.000 -0.084
3 0.00006 -0.000 0.000 1.000 -0.000
4 0.08918 0.036 -0.084 -0.000 1.000
p0=1.388e-14, s=0.2103, **********
** 16 **SET ERR 0.5
**********
**********
** 17 **SET PRINT 1
**********
**********
** 18 **HESSE 2000
**********
prevFCN = 26.37493073 f=0.2654,
prevFCN = 26.37493097 f=0.2651,
prevFCN = 26.37493099 f=0.2652, m=2.259,
prevFCN = 26.37493073 m=2.259,
prevFCN = 26.37493123 m=2.259, p0=1.589e-08,
prevFCN = 26.37493098 p0=1.583e-08,
prevFCN = 26.37493098 p0=1.388e-14, s=0.2104,
prevFCN = 26.3749308 s=0.2102,
prevFCN = 26.37493117 f=0.2653, s=0.2103,
prevFCN = 26.37493073 f=0.2652,
prevFCN = 26.37493074 f=0.2652, m=2.259,
prevFCN = 26.37493069 m=2.259,
prevFCN = 26.37493079 m=2.259, p0=6.405e-10,
prevFCN = 26.37493074 p0=6.286e-10,
prevFCN = 26.37493074 p0=1.388e-14, s=0.2103,
prevFCN = 26.3749307 s=0.2103,
prevFCN = 26.37493077 f=0.2654, m=2.259, s=0.2103,
prevFCN = 26.37493101 m=2.259, p0=1.589e-08,
prevFCN = 26.37493123 f=0.2652, m=2.259,
prevFCN = 26.37493099 f=0.2654, m=2.259, p0=1.388e-14, s=0.2104,
prevFCN = 26.37493103 f=0.2652, m=2.259,
prevFCN = 26.37493085 m=2.259, p0=1.589e-08,
prevFCN = 26.37493105 COVARIANCE MATRIX CALCULATED SUCCESSFULLY
FCN=26.3749 FROM HESSE STATUS=OK 23 CALLS 72 TOTAL
EDM=1.75675e-07 STRATEGY= 1 ERROR MATRIX ACCURATE
EXT PARAMETER INTERNAL INTERNAL
NO. NAME VALUE ERROR STEP SIZE VALUE
1 f 2.65243e-01 1.49170e-01 2.46269e-04 -4.88741e-01
2 m 2.25899e+00 1.40589e-01 1.02992e-05 2.27865e-01
3 p0 1.38778e-14 3.06306e-02 2.51894e-04 -1.57080e+00
WARNING - - ABOVE PARAMETER IS AT LIMIT.
4 s 2.10301e-01 9.37822e-02 6.72254e-06 2.10316e-02
ERR DEF= 0.5
EXTERNAL ERROR MATRIX. NDIM= 25 NPAR= 4 ERR DEF=0.5
2.315e-02 -1.205e-03 -7.334e-14 5.122e-04
-1.205e-03 1.977e-02 1.745e-14 -1.122e-03
-7.334e-14 1.745e-14 1.721e-15 -7.911e-15
5.122e-04 -1.122e-03 -7.911e-15 8.795e-03
PARAMETER CORRELATION COEFFICIENTS
NO. GLOBAL 1 2 3 4
1 0.06440 1.000 -0.056 -0.000 0.036
2 0.10040 -0.056 1.000 0.000 -0.085
3 0.00001 -0.000 0.000 1.000 -0.000
4 0.09060 0.036 -0.085 -0.000 1.000
p0=1.388e-14, s=0.2103, [#1] INFO:Minimization -- RooAbsMinimizerFcn::setOptimizeConst: deactivating const optimization
All Message streams
[0] MinLevel = PROGRESS Topic = Generation Minimization Plotting Fitting Integration LinkStateMgmt Eval Caching Optimization ObjectHandling InputArguments Tracing Contents DataHandling NumericIntegration FastEvaluations
[1] MinLevel = INFO Topic = Minimization Plotting Fitting Eval Caching ObjectHandling InputArguments DataHandling NumericIntegration
[2] MinLevel = INFO Topic = HistFactory
[3] MinLevel = DEBUG Topic = LinkStateMgmt
[#3] DEBUG:LinkStateMgmt -- RooAbsArg::addServer(0x811a390,g): adding server x(0x703d770) for value
[#3] DEBUG:LinkStateMgmt -- RooAbsArg::addServer(0x811a390,g): adding server m(0x68460e0) for value
[#3] DEBUG:LinkStateMgmt -- RooAbsArg::addServer(0x811a390,g): adding server s(0x64e9bf0) for value
[#3] DEBUG:LinkStateMgmt -- RooAbsArg::addServer(0x811a390,g): adding server x(0x703d770) for value
[#3] DEBUG:LinkStateMgmt -- RooAbsArg::addServer(0x811a390,g): adding server m(0x68460e0) for value
[#3] DEBUG:LinkStateMgmt -- RooAbsArg::addServer(0x811a390,g): adding server s(0x64e9bf0) for value
RooGaussian::g[ x=x mean=m sigma=s ] = 8.804e-26
Date
February 2018
Authors
Clemens Lange, Wouter Verkerke (C++ version)

Definition in file rf506_msgservice.py.