36#define BEGIN blockDim.x *blockIdx.x + threadIdx.x
37#define STEP blockDim.x *gridDim.x
51 for (
int pdf = 1; pdf < nPdfs; pdf++)
58 Batch m = batches[0], m0 = batches[1],
c = batches[2],
p = batches[3];
60 const double t =
m[i] / m0[i];
61 const double u = 1 - t * t;
74 Batch coef0 = batches[0];
75 Batch coef1 = batches[1];
76 Batch tagFlav = batches[2];
77 Batch delMistag = batches[3];
78 Batch mixState = batches[4];
79 Batch mistag = batches[5];
83 coef0[i] * (1.0 - tagFlav[i] * delMistag[0]) + coef1[i] * (mixState[i] * (1.0 - 2.0 * mistag[0]));
90 const int degree = nCoef - 1;
93 Batch xData = batches[0];
96 double binomial = 1.0;
97 for (
int k = 0; k < nCoef; k++) {
99 binomial = (binomial * (degree - k)) / (k + 1);
105 powX[i] = pow_1_X[i] = 1.0;
112 for (
int k = 2; k <= degree; k += 2)
114 pow_1_X[i] *= _1_X[i] * _1_X[i];
118 pow_1_X[i] *= _1_X[i];
122 _1_X[i] = 1 / _1_X[i];
124 for (
int k = 0; k < nCoef; k++)
130 pow_1_X[i] *= _1_X[i];
136 double powX = 1.0, pow_1_X = 1.0;
137 for (
int k = 1; k <= degree; k++)
139 const double _1_X = 1 / (1 -
X);
140 for (
int k = 0; k < nCoef; k++) {
149 for (
int k = 0; k < nCoef; k++) {
151 binomial = (binomial * (degree - k)) / (k + 1);
157 Batch X = batches[0], M = batches[1], SL = batches[2], SR = batches[3];
159 double arg =
X[i] - M[i];
170 Batch X = batches[0], M = batches[1], W = batches[2];
172 const double arg =
X[i] - M[i];
173 batches.
_output[i] = 1 / (arg * arg + 0.25 * W[i] * W[i]);
179 Batch X = batches[0], XP = batches[1], SP = batches[2], XI = batches[3],
R1 = batches[4],
R2 = batches[5];
180 const double r3 = log(2.0);
181 const double r6 = exp(-6.0);
182 const double r7 = 2 * sqrt(2 * log(2.0));
185 const double r1 = XI[i] *
fast_isqrt(XI[i] * XI[i] + 1);
186 const double r4 = 1 /
fast_isqrt(XI[i] * XI[i] + 1);
187 const double hp = 1 / (SP[i] * r7);
188 const double x1 = XP[i] + 0.5 * SP[i] * r7 * (r1 - 1);
189 const double x2 = XP[i] + 0.5 * SP[i] * r7 * (r1 + 1);
192 if (XI[i] > r6 || XI[i] < -r6)
195 double factor = 1,
y =
X[i] -
x1, Yp = XP[i] -
x1, yi = r4 - XI[i], rho =
R1[i];
204 batches.
_output[i] = rho *
y *
y / Yp / Yp - r3 + factor * 4 * r3 *
y * hp * r5 * r4 / yi / yi;
205 if (
X[i] >=
x1 &&
X[i] <
x2) {
207 fast_log(1 + 4 * XI[i] * r4 * (
X[i] - XP[i]) * hp) /
fast_log(1 + 2 * XI[i] * (XI[i] - r4));
210 if (
X[i] >=
x1 &&
X[i] <
x2 && XI[i] < r6 && XI[i] > -r6)
211 batches.
_output[i] = -4 * r3 * (
X[i] - XP[i]) * (
X[i] - XP[i]) * hp * hp;
219 Batch M = batches[0], M0 = batches[1], S = batches[2], A = batches[3],
N = batches[4];
221 const double t = (M[i] - M0[i]) / S[i];
222 if ((A[i] > 0 && t >= -A[i]) || (A[i] < 0 && -t >= A[i]))
223 batches.
_output[i] = -0.5 * t * t;
225 batches.
_output[i] =
N[i] / (
N[i] - A[i] * A[i] - A[i] * t);
228 batches.
_output[i] -= 0.5 * A[i] * A[i];
237 Batch xData = batches[0];
248 prev[i][0] = batches.
_output[i] = 1.0;
251 for (
int k = 0; k < nCoef; k++)
256 const double next = 2 *
X[i] * prev[i][1] - prev[i][0];
257 prev[i][0] = prev[i][1];
262 double prev0 = 1.0, prev1 = 2 * (xData[i] - 0.5 * (
xmax +
xmin)) / (
xmax -
xmin),
X = prev1;
264 for (
int k = 0; k < nCoef; k++) {
268 const double next = 2 *
X * prev1 - prev0;
278 const double ndof = batches.
extraArg(0);
279 const double gamma = 1 / std::tgamma(ndof / 2.0);
283 constexpr double ln2 = 0.693147180559945309417232121458;
285 double arg = (ndof - 2) *
fast_log(
X[i]) -
X[i] - ndof * ln2;
293 batches.
_output[i] = 0.0 + (batches[0][i] == 1.0);
299 Batch DM = batches[0], DM0 = batches[1], C = batches[2], A = batches[3], B = batches[4];
301 const double ratio = DM[i] / DM0[i];
302 const double arg1 = (DM0[i] - DM[i]) / C[i];
303 const double arg2 = A[i] *
fast_log(ratio);
314 int lowestOrder = batches.
extraArg(0);
320 double xTmp = std::pow(
x[i], lowestOrder);
321 for (
int k = 0; k < nTerms; ++k) {
322 batches.
_output[i] += batches[k + 1][i] * xTmp;
349 Batch X = batches[0],
G = batches[1], B = batches[2], M = batches[3];
350 double gamma = -std::lgamma(
G[0]);
353 batches.
_output[i] = (
G[i] == 1.0) / B[i];
354 else if (
G.isItVector())
355 batches.
_output[i] = -std::lgamma(
G[i]);
361 const double invBeta = 1 / B[i];
362 double arg = (
X[i] - M[i]) * invBeta;
365 batches.
_output[i] += arg * (
G[i] - 1);
373 const double root2 = std::sqrt(2.);
374 const double root2pi = std::sqrt(2. * std::atan2(0., -1.));
376 const bool isMinus = batches.
extraArg(0) < 0.0;
377 const bool isPlus = batches.
extraArg(0) > 0.0;
381 const double x = batches[0][i];
382 const double mean = batches[1][i] * batches[2][i];
383 const double sigma = batches[3][i] * batches[4][i];
384 const double tau = batches[5][i];
388 double xprime = (
x - mean) /
sigma;
389 double result = std::exp(-0.5 * xprime * xprime) / (
sigma * root2pi);
390 if (!isMinus && !isPlus)
392 batches._output[i] =
result;
395 const double xprime = (
x - mean) / tau;
396 const double c =
sigma / (root2 * tau);
397 const double u = xprime / (2 *
c);
404 batches._output[i] =
result;
412 auto mean = batches[1];
413 auto sigma = batches[2];
415 const double arg =
x[i] - mean[i];
416 const double halfBySigmaSq = -0.5 / (
sigma[i] *
sigma[i]);
424 batches.
_output[i] = batches[0][i];
435 batches.
_output[i] *= batches[1][i];
440 Batch mass = batches[0], mu = batches[1], lambda = batches[2], gamma = batches[3], delta = batches[4];
442 const double massThreshold = batches.
extraArg(0);
445 const double arg = (mass[i] - mu[i]) / lambda[i];
449 const double asinh_arg = asinh(arg);
451 const double expo = gamma[i] + delta[i] * asinh_arg;
453 delta[i] *
fast_exp(-0.5 * expo * expo) *
fast_isqrt(1. + arg * arg) / (sqrtTwoPi * lambda[i]);
455 const double passThrough = mass[i] >= massThreshold;
466 auto case0 = [](
double x) {
467 const double a1[3] = {0.04166666667, -0.01996527778, 0.02709538966};
469 return 0.3989422803 *
fast_exp(-1 / u - 0.5 * (
x + 1)) * (1 + (a1[0] + (a1[1] + a1[2] * u) * u) * u);
471 auto case1 = [](
double x) {
472 constexpr double p1[5] = {0.4259894875, -0.1249762550, 0.03984243700, -0.006298287635, 0.001511162253};
473 constexpr double q1[5] = {1.0, -0.3388260629, 0.09594393323, -0.01608042283, 0.003778942063};
475 return fast_exp(-u - 0.5 * (
x + 1)) * (p1[0] + (p1[1] + (p1[2] + (p1[3] + p1[4] *
x) *
x) *
x) *
x) /
476 (q1[0] + (q1[1] + (q1[2] + (q1[3] + q1[4] *
x) *
x) *
x) *
x);
478 auto case2 = [](
double x) {
479 constexpr double p2[5] = {0.1788541609, 0.1173957403, 0.01488850518, -0.001394989411, 0.0001283617211};
480 constexpr double q2[5] = {1.0, 0.7428795082, 0.3153932961, 0.06694219548, 0.008790609714};
481 return (p2[0] + (p2[1] + (p2[2] + (p2[3] + p2[4] *
x) *
x) *
x) *
x) /
482 (q2[0] + (q2[1] + (q2[2] + (q2[3] + q2[4] *
x) *
x) *
x) *
x);
484 auto case3 = [](
double x) {
485 constexpr double p3[5] = {0.1788544503, 0.09359161662, 0.006325387654, 0.00006611667319, -0.000002031049101};
486 constexpr double q3[5] = {1.0, 0.6097809921, 0.2560616665, 0.04746722384, 0.006957301675};
487 return (p3[0] + (p3[1] + (p3[2] + (p3[3] + p3[4] *
x) *
x) *
x) *
x) /
488 (q3[0] + (q3[1] + (q3[2] + (q3[3] + q3[4] *
x) *
x) *
x) *
x);
490 auto case4 = [](
double x) {
491 constexpr double p4[5] = {0.9874054407, 118.6723273, 849.2794360, -743.7792444, 427.0262186};
492 constexpr double q4[5] = {1.0, 106.8615961, 337.6496214, 2016.712389, 1597.063511};
493 const double u = 1 /
x;
494 return u * u * (p4[0] + (p4[1] + (p4[2] + (p4[3] + p4[4] * u) * u) * u) * u) /
495 (q4[0] + (q4[1] + (q4[2] + (q4[3] + q4[4] * u) * u) * u) * u);
497 auto case5 = [](
double x) {
498 constexpr double p5[5] = {1.003675074, 167.5702434, 4789.711289, 21217.86767, -22324.94910};
499 constexpr double q5[5] = {1.0, 156.9424537, 3745.310488, 9834.698876, 66924.28357};
500 const double u = 1 /
x;
501 return u * u * (p5[0] + (p5[1] + (p5[2] + (p5[3] + p5[4] * u) * u) * u) * u) /
502 (q5[0] + (q5[1] + (q5[2] + (q5[3] + q5[4] * u) * u) * u) * u);
504 auto case6 = [](
double x) {
505 constexpr double p6[5] = {1.000827619, 664.9143136, 62972.92665, 475554.6998, -5743609.109};
506 constexpr double q6[5] = {1.0, 651.4101098, 56974.73333, 165917.4725, -2815759.939};
507 const double u = 1 /
x;
508 return u * u * (p6[0] + (p6[1] + (p6[2] + (p6[3] + p6[4] * u) * u) * u) * u) /
509 (q6[0] + (q6[1] + (q6[2] + (q6[3] + q6[4] * u) * u) * u) * u);
511 auto case7 = [](
double x) {
512 const double a2[2] = {-1.845568670, -4.284640743};
514 return u * u * (1 + (a2[0] + a2[1] * u) * u);
517 Batch X = batches[0], M = batches[1], S = batches[2];
520 batches.
_output[i] = (
X[i] - M[i]) / S[i];
525 else if (batches.
_output[i] < -5.5)
527 else if (batches.
_output[i] < -1.0)
529 else if (batches.
_output[i] < 1.0)
531 else if (batches.
_output[i] < 5.0)
533 else if (batches.
_output[i] < 12.0)
535 else if (batches.
_output[i] < 50.0)
537 else if (batches.
_output[i] < 300.)
545 Batch X = batches[0], M0 = batches[1], K = batches[2];
546 constexpr double rootOf2pi = 2.506628274631000502415765284811;
548 double lnxOverM0 =
fast_log(
X[i] / M0[i]);
552 double arg = lnxOverM0 / lnk;
560 Batch X = batches[0], M0 = batches[1], K = batches[2];
561 constexpr double rootOf2pi = 2.506628274631000502415765284811;
563 double lnxOverM0 =
fast_log(
X[i]) - M0[i];
567 double arg = lnxOverM0 / lnk;
575 auto rawVal = batches[0];
576 auto normVal = batches[1];
578 int nEvalErrorsType0 = 0;
579 int nEvalErrorsType1 = 0;
580 int nEvalErrorsType2 = 0;
585 if (normVal[i] < 0. || (normVal[i] == 0. && rawVal[i] != 0)) {
589 }
else if (rawVal[i] < 0.) {
593 }
else if (std::isnan(rawVal[i])) {
598 out = (rawVal[i] == 0. && normVal[i] == 0.) ? 0. : rawVal[i] / normVal[i];
603 if (nEvalErrorsType0 > 0)
605 if (nEvalErrorsType1 > 1)
607 if (nEvalErrorsType2 > 2)
621 Batch X = batches[0], P = batches[1], W = batches[2], T = batches[3];
622 constexpr double xi = 2.3548200450309494;
624 double argasinh = 0.5 * xi * T[i];
625 double argln = argasinh + 1 /
fast_isqrt(argasinh * argasinh + 1);
628 double argln2 = 1 - (
X[i] - P[i]) * T[i] / W[i];
630 batches.
_output[i] = ln / asinh;
632 batches.
_output[i] -= 2.0 / xi / xi * asinh * asinh;
642 Batch x = batches[0], mean = batches[1];
643 bool protectNegative = batches.
extraArg(0);
644 bool noRounding = batches.
extraArg(1);
646 const double x_i = noRounding ?
x[i] : floor(
x[i]);
647 batches.
_output[i] = std::lgamma(x_i + 1.);
651 const double x_i = noRounding ?
x[i] : floor(
x[i]);
652 const double logMean =
fast_log(mean[i]);
653 const double logPoisson = x_i * logMean - mean[i] - batches.
_output[i];
662 if (protectNegative && mean[i] < 0)
669 const int nCoef = batches.
extraArg(0);
670 const std::size_t nEvents = batches.
getNEvents();
673 for (
size_t i =
BEGIN; i < nEvents; i +=
STEP) {
674 batches.
_output[i] = batches[nCoef - 1][i];
679 for (
int k = nCoef - 2; k >= 0; k--) {
680 for (
size_t i =
BEGIN; i < nEvents; i +=
STEP) {
688 const int nCoef = batches.
extraArg(0);
693 for (
int k = 0; k < nCoef; ++k) {
694 batches.
_output[i] += batches[2 * k + 1][i] * std::pow(
x[i], batches[2 * k + 2][i]);
701 const int nPdfs = batches.
extraArg(0);
705 for (
int pdf = 0; pdf < nPdfs; pdf++) {
707 batches.
_output[i] *= batches[pdf][i];
715 batches.
_output[i] = batches[0][i] / batches[1][i];
722 const bool isMinus = batches.
extraArg(0) < 0.0;
723 const bool isPlus = batches.
extraArg(0) > 0.0;
725 double x = batches[0][i];
727 const bool isOutOfSign = (isMinus &&
x > 0.0) || (isPlus &&
x < 0.0);
728 batches.
_output[i] = isOutOfSign ? 0.0 :
fast_exp(-std::abs(
x) / batches[1][i]);
734 const bool isMinus = batches.
extraArg(0) < 0.0;
735 const bool isPlus = batches.
extraArg(0) > 0.0;
737 double x = batches[0][i];
739 const bool isOutOfSign = (isMinus &&
x > 0.0) || (isPlus &&
x < 0.0);
746 const bool isMinus = batches.
extraArg(0) < 0.0;
747 const bool isPlus = batches.
extraArg(0) > 0.0;
749 double x = batches[0][i];
751 const bool isOutOfSign = (isMinus &&
x > 0.0) || (isPlus &&
x < 0.0);
758 const bool isMinus = batches.
extraArg(0) < 0.0;
759 const bool isPlus = batches.
extraArg(0) > 0.0;
761 double x = batches[0][i];
763 const bool isOutOfSign = (isMinus &&
x > 0.0) || (isPlus &&
x < 0.0);
767 const double tscaled = std::abs(
x) / batches[1][i];
775 const bool isMinus = batches.
extraArg(0) < 0.0;
776 const bool isPlus = batches.
extraArg(0) > 0.0;
778 double x = batches[0][i];
780 const bool isOutOfSign = (isMinus &&
x > 0.0) || (isPlus &&
x < 0.0);
784 const double tscaled = std::abs(
x) / batches[1][i];
792 const bool isMinus = batches.
extraArg(0) < 0.0;
793 const bool isPlus = batches.
extraArg(0) > 0.0;
795 double x = batches[0][i];
797 const bool isOutOfSign = (isMinus &&
x > 0.0) || (isPlus &&
x < 0.0);
798 batches.
_output[i] = isOutOfSign ? 0.0 :
fast_exp(-std::abs(
x) / batches[1][i]) * sinh(
x * batches[2][i] * 0.5);
804 const bool isMinus = batches.
extraArg(0) < 0.0;
805 const bool isPlus = batches.
extraArg(0) > 0.0;
807 double x = batches[0][i];
809 const bool isOutOfSign = (isMinus &&
x > 0.0) || (isPlus &&
x < 0.0);
810 batches.
_output[i] = isOutOfSign ? 0.0 :
fast_exp(-std::abs(
x) / batches[1][i]) * cosh(
x * batches[2][i] * .5);
816 Batch X = batches[0], M = batches[1], W = batches[2], S = batches[3];
817 const double invSqrt2 = 0.707106781186547524400844362105;
819 const double arg = (
X[i] - M[i]) * (
X[i] - M[i]);
820 if (S[i] == 0.0 && W[i] == 0.0)
822 else if (S[i] == 0.0)
823 batches.
_output[i] = 1 / (arg + 0.25 * W[i] * W[i]);
824 else if (W[i] == 0.0)
827 batches.
_output[i] = invSqrt2 / S[i];
831 if (S[i] != 0.0 && W[i] != 0.0) {
834 const double factor = W[i] > 0.0 ? 0.5 : -0.5;
835 RooHeterogeneousMath::STD::complex<double> z(batches.
_output[i] * (
X[i] - M[i]),
836 factor * batches.
_output[i] * W[i]);
winID h TVirtualViewer3D TVirtualGLPainter p
Option_t Option_t TPoint TPoint const char GetTextMagnitude GetFillStyle GetLineColor GetLineWidth GetMarkerStyle GetTextAlign GetTextColor GetTextSize void char Point_t Rectangle_t WindowAttributes_t Float_t Float_t Float_t Int_t Int_t UInt_t UInt_t Rectangle_t result
Option_t Option_t TPoint TPoint const char x2
Option_t Option_t TPoint TPoint const char x1
__roodevice__ std::size_t getNEvents() const
__roodevice__ std::size_t getNExtraArgs() const
__roodevice__ void setExtraArg(std::size_t i, double val)
__roodevice__ double extraArg(std::size_t i) const
__rooglobal__ void computeTruthModelCosBasis(BatchesHandle batches)
__rooglobal__ void computeExponential(BatchesHandle batches)
__rooglobal__ void computeDstD0BG(BatchesHandle batches)
__rooglobal__ void computeLandau(BatchesHandle batches)
__rooglobal__ void computeArgusBG(BatchesHandle batches)
__rooglobal__ void computeBukin(BatchesHandle batches)
__rooglobal__ void computeLognormalStandard(BatchesHandle batches)
__rooglobal__ void computeNovosibirsk(BatchesHandle batches)
__rooglobal__ void computeNormalizedPdf(BatchesHandle batches)
__rooglobal__ void computePolynomial(BatchesHandle batches)
__rooglobal__ void computeTruthModelSinhBasis(BatchesHandle batches)
__rooglobal__ void computePoisson(BatchesHandle batches)
__rooglobal__ void computeTruthModelCoshBasis(BatchesHandle batches)
__rooglobal__ void computeBifurGauss(BatchesHandle batches)
__rooglobal__ void computeTruthModelSinBasis(BatchesHandle batches)
__rooglobal__ void computeExpPoly(BatchesHandle batches)
__rooglobal__ void computeRatio(BatchesHandle batches)
__rooglobal__ void computeAddPdf(BatchesHandle batches)
__rooglobal__ void computeTruthModelLinBasis(BatchesHandle batches)
__rooglobal__ void computeChiSquare(BatchesHandle batches)
__rooglobal__ void computeTruthModelQuadBasis(BatchesHandle batches)
__rooglobal__ void computeDeltaFunction(BatchesHandle batches)
__rooglobal__ void computeChebychev(BatchesHandle batches)
__rooglobal__ void computeExponentialNeg(BatchesHandle batches)
__rooglobal__ void computeIdentity(BatchesHandle batches)
__rooglobal__ void computeLognormal(BatchesHandle batches)
__rooglobal__ void computeGaussModelExpBasis(BatchesHandle batches)
__rooglobal__ void computeVoigtian(BatchesHandle batches)
__rooglobal__ void computePower(BatchesHandle batches)
__rooglobal__ void computeTruthModelExpBasis(BatchesHandle batches)
__rooglobal__ void computeGaussian(BatchesHandle batches)
__rooglobal__ void computeBernstein(BatchesHandle batches)
__rooglobal__ void computeNegativeLogarithms(BatchesHandle batches)
__rooglobal__ void computeGamma(BatchesHandle batches)
std::vector< void(*)(BatchesHandle)> getFunctions()
Returns a std::vector of pointers to the compute functions in this file.
__rooglobal__ void computeJohnson(BatchesHandle batches)
__rooglobal__ void computeBreitWigner(BatchesHandle batches)
__rooglobal__ void computeProdPdf(BatchesHandle batches)
__rooglobal__ void computeCBShape(BatchesHandle batches)
__rooglobal__ void computeBMixDecay(BatchesHandle batches)
Namespace for dispatching RooFit computations to various backends.
__roodevice__ double fast_exp(double x)
__roodevice__ double fast_sin(double x)
constexpr std::size_t bufferSize
__roodevice__ double fast_log(double x)
__roodevice__ double fast_cos(double x)
__roodevice__ double fast_isqrt(double x)
__roodevice__ __roohost__ STD::complex< double > faddeeva(STD::complex< double > z)
__roohost__ __roodevice__ STD::complex< double > evalCerf(double swt, double u, double c)
constexpr Double_t TwoPi()
#define R1(v, w, x, y, z, i)
#define R2(v, w, x, y, z, i)
__roodevice__ static __roohost__ double packFloatIntoNaN(float payload)
Pack float into mantissa of a NaN.