70   fLogger(new 
MsgLogger(
"CostComplexityPruneTool") )
 
  104   if( dt == NULL || (
IsAutomatic() && validationSample == NULL) ) {
 
  122      Log() << kDEBUG << 
"Sum of weights in pruning validation sample: " << W << 
Endl;
 
  123      Log() << kDEBUG << 
"Quality of tree prior to any pruning is " << Q/W << 
Endl;
 
  130   catch(
const std::string &error) {
 
  131      Log() << kERROR << 
"Couldn't initialize the tree meta data because of error (" 
  132            << error << 
")" << 
Endl;
 
  136   Log() << kDEBUG << 
"Automatic cost complexity pruning is " << (
IsAutomatic()?
"on":
"off") << 
"." << 
Endl;
 
  141   catch(
const std::string &error) {
 
  142      Log() << kERROR << 
"Error optimizing pruning sequence (" 
  143            << error << 
")" << 
Endl;
 
  147   Log() << kDEBUG << 
"Index of pruning sequence to stop at: " << 
fOptimalK << 
Endl;
 
  157      Log() << kINFO << 
"no proper pruning could be calculated. Tree " 
  158            <<  dt->
GetTreeID() << 
" will not be pruned. Do not worry if this " 
  159            << 
" happens for a few trees " << 
Endl;
 
  182   if( 
n == NULL ) 
return;
 
  188   else n->SetNodeR( (s+
b)*
n->GetSeparationIndex() );
 
  190   if(
n->GetLeft() != NULL && 
n->GetRight() != NULL) { 
 
  196      n->SetNTerminal( 
n->GetLeft()->GetNTerminal() +
 
  197                       n->GetRight()->GetNTerminal());
 
  199      n->SetSubTreeR( (
n->GetLeft()->GetSubTreeR() +
 
  200                       n->GetRight()->GetSubTreeR()));
 
  202      n->SetAlpha( ((
n->GetNodeR() - 
n->GetSubTreeR()) /
 
  203                    (
n->GetNTerminal() - 1)));
 
  207      n->SetAlphaMinSubtree( std::min(
n->GetAlpha(), std::min(
n->GetLeft()->GetAlphaMinSubtree(),
 
  208                                                              n->GetRight()->GetAlphaMinSubtree())));
 
  209      n->SetCC(
n->GetAlpha());
 
  212      n->SetNTerminal( 1 ); 
n->SetTerminal( );
 
  214      else n->SetSubTreeR( (s+
b)*
n->GetSeparationIndex() );
 
  215      n->SetAlpha(std::numeric_limits<double>::infinity( ));
 
  216      n->SetAlphaMinSubtree(std::numeric_limits<double>::infinity( ));
 
  217      n->SetCC(
n->GetAlpha());
 
  262   while(
R->GetNTerminal() > 1) { 
 
  265      alpha = 
TMath::Max(
R->GetAlphaMinSubtree(), alpha);
 
  267      if( 
R->GetAlphaMinSubtree() >= 
R->GetAlpha() ) {
 
  268         Log() << kDEBUG << 
"\nCaught trying to prune the root node!" << 
Endl;
 
  289         Log() << kDEBUG << 
"\nCaught trying to prune the root node!" << 
Endl;
 
  315      Log() << kDEBUG << 
"after this pruning step I would have " << 
R->GetNTerminal() << 
" remaining terminal nodes " << 
Endl;
 
  351   Log() << kDEBUG  << 
"\n************ Summary for Tree " << dt->
GetTreeID() << 
" *******"  << 
Endl 
  354   Log() << kDEBUG  << 
"Pruning strength parameters: [";
 
  359   Log() << kDEBUG  << 
"Misclassification rates: [";
 
Double_t GetSubTreeR() const
void SetAlphaMinSubtree(Double_t g)
Double_t GetAlphaMinSubtree() const
void SetSubTreeR(Double_t r)
virtual DecisionTreeNode * GetLeft() const
Double_t GetNodeR() const
Double_t GetAlpha() const
Int_t GetNTerminal() const
void SetAlpha(Double_t alpha)
virtual DecisionTreeNode * GetParent() const
void SetNTerminal(Int_t n)
virtual DecisionTreeNode * GetRight() const
Implementation of a Decision Tree.
Double_t GetNodePurityLimit() const
void ApplyValidationSample(const EventConstList *validationSample) const
run the validation sample through the (pruned) tree and fill in the nodes the variables NSValidation ...
virtual DecisionTreeNode * GetRoot() const
void PruneNodeInPlace(TMVA::DecisionTreeNode *node)
prune a node temporarily (without actually deleting its descendants which allows testing the pruned t...
Double_t TestPrunedTreeQuality(const DecisionTreeNode *dt=nullptr, Int_t mode=0) const
return the misclassification rate of a pruned tree a "pruned tree" may have set the variable "IsTermi...
Double_t GetSumWeights(const EventConstList *validationSample) const
calculate the normalization factor for a pruning validation sample
ostringstream derivative to redirect and format output
void SetMinType(EMsgType minType)
std::vector< DecisionTreeNode * > PruneSequence
the regularization parameter for pruning
Double_t PruneStrength
quality measure for a pruned subtree T of T_max
An interface to calculate the "SeparationGain" for different separation criteria used in various trai...
virtual Double_t GetSeparationIndex(const Double_t s, const Double_t b)=0
create variable transformations
MsgLogger & Endl(MsgLogger &ml)
Short_t Max(Short_t a, Short_t b)
Returns the largest of a and b.
Short_t Abs(Short_t d)
Returns the absolute value of parameter Short_t d.