Functions | |
| double | chebychevIntegral (double const *coeffs, unsigned int nCoeffs, double xMin, double xMax, double xMinFull, double xMaxFull) |
| double | exponentialIntegral (double xMin, double xMax, double constant) |
| double | fast_fma (double x, double y, double z) noexcept |
| use fast FMA if available, fall back to normal arithmetic if not | |
| double | gaussianIntegral (double xMin, double xMax, double mean, double sigma) |
| Function to calculate the integral of an un-normalized RooGaussian over x. | |
| double | logNormalIntegral (double xMin, double xMax, double m0, double k) |
| double | logNormalIntegralStandard (double xMin, double xMax, double mu, double sigma) |
| double | max (double x, double y) |
| double | min (double x, double y) |
| double | poissonIntegral (int code, double mu, double x, double integrandMin, double integrandMax, unsigned int protectNegative) |
| template<bool pdfMode = false> | |
| double | polynomialIntegral (double const *coeffs, int nCoeffs, int lowestOrder, double xMin, double xMax) |
| In pdfMode, a coefficient for the constant term of 1.0 is implied if lowestOrder > 0. | |
|
inline |
Definition at line 112 of file AnalyticalIntegrals.h.
|
inline |
Definition at line 69 of file AnalyticalIntegrals.h.
|
inlinenoexcept |
use fast FMA if available, fall back to normal arithmetic if not
Definition at line 99 of file AnalyticalIntegrals.h.
|
inline |
Function to calculate the integral of an un-normalized RooGaussian over x.
To calculate the integral over mean, just interchange the respective values of x and mean.
| xMin | Minimum value of variable to integrate wrt. |
| xMax | Maximum value of of variable to integrate wrt. |
| mean | Mean. |
| sigma | Sigma. |
Definition at line 35 of file AnalyticalIntegrals.h.
|
inline |
Definition at line 237 of file AnalyticalIntegrals.h.
|
inline |
Definition at line 248 of file AnalyticalIntegrals.h.
Definition at line 178 of file AnalyticalIntegrals.h.
Definition at line 183 of file AnalyticalIntegrals.h.
|
inline |
Definition at line 190 of file AnalyticalIntegrals.h.
|
inline |
In pdfMode, a coefficient for the constant term of 1.0 is implied if lowestOrder > 0.
Definition at line 80 of file AnalyticalIntegrals.h.