Logo ROOT  
Reference Guide
 
Loading...
Searching...
No Matches
principal.py File Reference

Namespaces

namespace  principal
 

Detailed Description

View in nbviewer Open in SWAN
Principal Components Analysis (PCA) example

Example of using TPrincipal as a stand alone class.

I create n-dimensional data points, where c = trunc(n / 5) + 1 are correlated with the rest n - c randomly distributed variables.

Based on principal.C by Rene Brun and Christian Holm Christensen

Variable # | Mean Value | Sigma | Eigenvalue
-------------+------------+------------+------------
0 | 4.994 | 0.9926 | 0.3856
1 | 8.011 | 2.824 | 0.112
2 | 2.017 | 1.992 | 0.1031
3 | 4.998 | 0.9952 | 0.1022
4 | 8.019 | 2.794 | 0.09998
5 | 1.976 | 2.009 | 0.0992
6 | 4.996 | 0.9996 | 0.09794
7 | 35.01 | 5.147 | 1.409e-16
8 | 30.01 | 5.041 | 2.723e-16
9 | 28.04 | 4.644 | 4.578e-16
Writing on file "pca.C" ... done
*************************************************
* Principal Component Analysis *
* *
* Number of variables: 10 *
* Number of data points: 10000 *
* Number of dependent variables: 3 *
* *
*************************************************
from ROOT import TPrincipal, gRandom, TBrowser, vector
n = 10
m = 10000
c = int(n / 5) + 1
print ("""*************************************************
* Principal Component Analysis *
* *
* Number of variables: {0:4d} *
* Number of data points: {1:8d} *
* Number of dependent variables: {2:4d} *
* *
*************************************************""".format(n, m, c))
# Initilase the TPrincipal object. Use the empty string for the
# final argument, if you don't wan't the covariance
# matrix. Normalising the covariance matrix is a good idea if your
# variables have different orders of magnitude.
principal = TPrincipal(n, "ND")
# Use a pseudo-random number generator
randumNum = gRandom
# Make the m data-points
# Make a variable to hold our data
# Allocate memory for the data point
data = vector('double')()
for i in range(m):
# First we create the un-correlated, random variables, according
# to one of three distributions
for j in range(n - c):
if j % 3 == 0:
data.push_back(randumNum.Gaus(5, 1))
elif j % 3 == 1:
data.push_back(randumNum.Poisson(8))
else:
data.push_back(randumNum.Exp(2))
# Then we create the correlated variables
for j in range(c):
data.push_back(0)
for k in range(n - c - j):
data[n - c + j] += data[k]
# Finally we're ready to add this datapoint to the PCA
principal.AddRow(data.data())
data.clear()
# Do the actual analysis
principal.MakePrincipals()
# Print out the result on
principal.Print()
# Test the PCA
principal.Test()
# Make some histograms of the orginal, principal, residue, etc data
principal.MakeHistograms()
# Make two functions to map between feature and pattern space
# Start a browser, so that we may browse the histograms generated
# above
principal.MakeCode()
b = TBrowser("principalBrowser", principal)
Option_t Option_t TPoint TPoint const char GetTextMagnitude GetFillStyle GetLineColor GetLineWidth GetMarkerStyle GetTextAlign GetTextColor GetTextSize void char Point_t Rectangle_t WindowAttributes_t Float_t Float_t Float_t Int_t Int_t UInt_t UInt_t Rectangle_t Int_t Int_t Window_t TString Int_t GCValues_t GetPrimarySelectionOwner GetDisplay GetScreen GetColormap GetNativeEvent const char const char dpyName wid window const char font_name cursor keysym reg const char only_if_exist regb h Point_t winding char text const char depth char const char Int_t count const char ColorStruct_t color const char Pixmap_t Pixmap_t PictureAttributes_t attr const char char ret_data h unsigned char height h Atom_t Int_t ULong_t ULong_t unsigned char prop_list Atom_t Atom_t Atom_t Time_t format
Using a TBrowser one can browse all ROOT objects.
Definition TBrowser.h:37
Principal Components Analysis (PCA)
Definition TPrincipal.h:21
Authors
Juan Fernando, Jaramillo Botero

Definition in file principal.py.